
Miller et al. monolithically fabricate a series 
of 2D electron device microstructures that 
enable them to determine the effects of 
constriction of the 5/2 FQH fluid. They 
find that constriction by a 0.5-μm-wide 
quantum point contact does indeed destroy 
the 5/2 FQH state. But, they also find that 
confinement by slightly larger constrictions, 
of just 0.8 and 1.2 μm wide, doesn’t. This 
more encouraging result has two important 
implications for our ability to investigate 
non-abelian statistics experimentally.

First, the survival of the fragile 5/2 state 
within a single constriction could enable the 
fractional charge of the quasiparticles that 
populate it to be determined, and compared 
to the value of e/4 predicted for the 
Moore–Read state. In previous studies, the 
charge of the quasiparticles of the abelian 
1/3 FQH state has been measured either 
by monitoring the one-by-one addition 
of quasiparticles into an anti-dot placed 
within a constriction5, or by analysing the 
power spectrum of the shot noise that 
arises from tunnelling of quasiparticles 
through the constriction6,7. In principle, the 
same approaches should be applicable to 
the authors’ 5/2 FQH system. Yet, the very 

non-abelian nature of the quasiparticles 
of this system might yet throw up some 
surprises that would complicate the answer 
to the question of whether the Moore–Read 
formalism paints an accurate picture of the 
5/2 FQH state.

But perhaps a more ambitious, 
and certainly more exciting, possibility 
offered by the present work is to build 
complex device structures with multiple 
constrictions. This would enable the 
construction of a quasiparticle Aharonov–
Bohm interferometer (see Fig. 1), similar 
to that used to probe the abelian anyon 
statistics of the 1/3 FQH fluid8. Theoretical 
analysis9,10 of such an interferometer 
operating in a non-abelian 5/2 FQH regime 
predicts the emergence of unusual, history-
dependent interference phenomena. One 
of the key challenges to building such a 
device will be to engineer constrictions that 
are narrow enough to transmit measurable 
quasiparticle tunnelling currents while 
maintaining a sufficiently small electron 
depletion to ensure that the 5/2 FQH 
fluid remains dominant. For the strong 
1/3 FQH state it was adequate to limit the 
constriction electron density depletion to 

7%, relative to the centre of island within 
the Aharonov–Bohm ring, to maintain 
the 1/3 fluid throughout the island8. But, 
in the case of the 5/2 state, because of the 
proximity and strength of competing nearby 
correlated electron states, it is likely that a 
much weaker depletion of around 1% would 
be needed to avoid the complications that a 
contribution by such states would cause. In 
the widest constrictions demonstrated by 
Miller et al.1 the depletion is estimated to be 
around 16%, far short of this target. But if 
future work can bring this down to the level 
needed to study a pure non-abelian FQH 
fluid, the rewards in terms of new physics is 
likely to be great indeed.
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We are rapidly learning how to 
understand crackling noise. Many 
things crackle: paper when it is 

crumpled, faults when tectonic plates 
rub together and magnets as they change 
magnetization — the subject of the article 
by Ryu, Akinaga and Shin on page 547 
of this issue1. The response to a smooth, 
slow external force is a series of abrupt 
avalanches with a broad range of sizes. Thus 
earthquakes are the crackling response of 
the Earth as the continents drift.

Why do things crackle? The first 
hint comes from the simple power-law 
distribution of avalanche sizes. Most 

earthquakes are small; there are many more 
magnitude-six earthquakes than magnitude 
seven, and very few of magnitude eight. 
Indeed, the probability P(s) of an earthquake 
(or magnetic spin avalanche) of size s falls 
off as a power law, s–τ. The exponent τ is 
universal — meaning that it will be shared 
among a large family of materials and 
systems. It will typically differ between 
systems that are fundamentally different; for 
example, crumpled paper and earthquake 
faults respond in basically different ways to 
their external forces. The exponent will also 
depend on the dimensionality of the system; 
for example, thin two-dimensional films will 
be different from bulk three-dimensional 
magnets. But τ usually will be independent 
of the microscopic details of the materials 
(which enables theoretical models to 
describe real experiments accurately). 
Sometimes τ will be shared between 

strikingly different systems — for example, 
magnets and fluids invading porous rock — 
that are in the same universality class.

Power laws provide a hint to 
understanding crackling noise because 
they suggest the existence of an emergent 
symmetry of the system: scale invariance. 
Scale invariance means that the system looks 
(statistically) the same when put under a 
magnifying glass. Figure 1 shows some of the 
avalanches in a simple model of a magnet. 
The wide variety of avalanche sizes and their 
characteristic fractal shapes are typical of 
scale-invariant systems. When magnified the 
small avalanches become medium sized, the 
medium sized become large, and one of the 
large ones might become the background 
‘infinite’ avalanche — riddled with holes of all 
sizes formed by interior sub-avalanches. The 
domain walls observed by Ryu et al.1 have 
this fractal scale-invariant symmetry too.

Magnetic domains in a thin film grow in a jerky manner as avalanches of spins flip their 
directions. At low temperatures, the measured distribution of avalanche sizes agrees with 
one theory; at high temperatures, with another.
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Symmetries are a powerful tool for 
understanding materials. Because solids 
(on long length-scales) have translational 
symmetry, we know that motion through 
them must obey certain laws; heat, 
vacancies, impurities and neutrons in 
solids all obey the same laws of motion 
because the diffusion equation is the 
translation-invariant macroscopic law that 
dominates on long length- and timescales. 
Liquids are all described by the same 
Navier–Stokes equations because they 
have a galilean symmetry — invariance to 
translations and shifts in velocity. Quantum 
field theories (quantum electrodynamics, 
governing light and atoms; quantum 
chromodynamics, governing quarks and 
the nucleus; and the unification theories 
governing higher energies) are strongly 
constrained by the need to be Lorentz-
invariant such that they obey Einstein’s 
prescription that light’s speed is the same to 
all moving observers.

Why are magnets and other crackling 
systems symmetric under change of scale? 
This emergent symmetry isn’t a property 
of the original system — it emerges from 
the way avalanches trigger one another. 
A big avalanche is composed of smaller 
components, which trigger one another 
in the same way that big avalanches 
combine into enormous ones. Imagine 
‘demagnifying’ the system, stepping back 
and ignoring the smallest avalanches. The 
material now behaves like a new system 
with slightly different ‘coarse-grained’ 
rules, a new point in system space (Fig. 2). 
Tracking the so-called ‘renormalization-
group flows’ as we coarse-grain the system2, 
both universality and the emergence of scale 
invariance are found to be due to attracting 
fixed points in system space. If two different 
materials coarse-grain into the same fixed 
point, they will be self-similar — they look 
the same when demagnified — in precisely 
the same way (with the same exponent τ).

But why do Ryu et al.1 measure two 
different values for τ? Our understanding 
of two-dimensional (thin-film) magnets 
remains incomplete. In three dimensions, 
though, we understand that there are 
two different fixed points, depending on 
the importance of long-range dipolar 
interactions between spins3. If dipolar 
forces are not important, front propagation 
(originally studied by those using water to 
push oil out of porous rock) occurs; if they 
are strong, the behaviour is mean-field-like. 
If they are weak but non-zero, then small 
avalanches will be described by front 
propagation exponents and large avalanches 
by mean-field. Figure 2 shows the 
renormalization-group flows corresponding 
to this crossover. A system with weak dipolar 
forces will initially coarse-grain towards the 

front propagation fixed point U; however, 
the dipolar forces grow under coarse 
graining, eventually leading to a crossover 
to mean-field behaviour described by S. The 
scaling function estimated experimentally 
by Ryu et al.1 is universal because it is 
determined by the green unstable line 
flowing from U to S. A quantitative theory 
of the crossover, and indeed for the two-
dimensional phase diagram, remains a 
theoretical challenge for the future.

It’s natural to ask whether the 
‘fundamental’ symmetries of nature 
(translation, rotation and Lorentz 
invariance) might be emergent too. The 
translation-invariant diffusion equation 
describes transport in crystals where 
the atomic lattice is microscopically not 
invariant under translations (except 
translations by integer numbers of lattice 
constants). In principle, Einstein’s relativity 
and Lorentz invariance could emerge from 
a universe made up from a crystalline 
lattice too — indeed, lattice simulations of 
quantum chromodynamics and other field 
theories rely on this emergent symmetry4. 
So far exactly the reverse has been the 
case. Just as a magnet at high temperature 
loses its magnetization and becomes 
symmetric under the exchange of north 
and south poles, so the vacuum becomes 
more symmetric at short distances (high 
energies). Our universe started with high 
symmetry and broke it to form quantum 
mechanics and atoms; these atoms combine 
to form crackling materials in which new 
fractal symmetries emerge.
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Figure 1 avalanches, here in the jerky magnetic-domain growth of a simulated three-dimensional magnet, often have 
a fractal structure and a wide distribution of sizes. 
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Figure 2 System flows under ‘coarse-graining’2. System 
space has one axis for each parameter: temperature, 
dipolar interaction and so forth. Fixed points such as U 
and S are self-similar; systems that flow to fixed points 
become self-similar on long length scales. 
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