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Exercises (1-3 for everyone, 4-5 for 6562 only)
Everyone (4488 and 6562)

Questions 1-3

1. Convexity and phase separation. ©3
A piston, initially completely filled with water vapor, compresses the gas until it is
completely liquid (connecting the marked positions in Fig. 1). The piston is held at
temperature T = 550K at all times.

50 100 150 200 250 300
0

5.0×107

1.0×108

1.5×108

2.0×108

Volume per mole (cm^3)

P
re
ss
ur
e
(d
yn
es

/c
m
^2

)

Fig. 1 Pressure vs. volume for the van der Waals model applied to one mole of H2O at
T = 550K. The red line shows the vapor pressure Pv at this temperature.

(a) Draw the path on Fig. 1 taken if the piston moves slowly enough that the system
remains in thermal equilibrium at all times.

(b) Sketch a path on Fig. 1 taken if the piston moves fast enough so that the pressure
rises past the vapor pressure (say, to 1.2 × 108 dynes/cm2) before a liquid water drop
nucleates, but slowly enough so that the subsequent condensation of vapor into the water
stays in equilibrium.

Figure 2 shows the chemical potential for the van der Waals model as a function of
density at this same temperature. Remember that the Gibbs free energy is µN , so
this is also the Gibbs free energy per molecule. Note that the van der Waals solution
assumes that the system is filled with molecules at a uniform density ρ, not a mixture
of liquid and gas.
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Fig. 2 Chemical potential µ vs. density ρ for the van der Waals model for H2O at
T = 550K.

(c) Sketch on a copy of Fig. 2 the free energy one would obtain by allowing for the
separation of the water into coexisting liquid and gas. (Ignore the small contribution of
surface tension.)

If a system can be broken up into two weakly interacting subsystems, then the minimum
free energy for the system in the limit of infinite size must be convex (see note 4 on
page 322).

(d) In your solution to part (c), what are the two weakly interacting subsystems? Why
did we need to take the limit of infinite size to ignore surface tension? Is your answer
convex?
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2. Spinodals vs. Nucleation. ©3
Here we explore the predicted edges of metastability for the liquid and gas, which
are called spinodals in the older literature. Spinodals provide some insight into the
behavior of materials near abrupt transitions, but should not be taken literally – fluc-
tuations ignored by models like these cause the crossover from nucleation to ‘spinodal
decomposition’ to become blurred.
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Fig. 3 Volume vs. pressure for the van der Waals model applied to one mole of H2O at
T = 550 K. The red line shows Pv at this temperature.

Let us explore how the Gibbs free energy per particle G/N = µ (Fig. 4) varies as we
move between different points on the P−V diagram Fig. 3.

(a) At point α in Fig. 3 at the highest pressure, how many other solutions are there with
that pressure? Which of the labeled points in the free energy plots of Fig. 4 corresponds
to the state α?
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Fig. 4 Chemical potential vs. density at a few of the labeled points α–ζ in Fig. 3. The
labeled points a-j here are solutions to the van der Waals model.

(b) Is the system at point δ in Fig. 3 stable, unstable, or metastable? Which point a–j
in Fig. 4 corresponds to δ? Explain what about the free energy tells you whether a state
is stable, unstable, or metastable.

We gradually compress a hot water vapor at 550 K. We first study this in the P − V
plane and in terms of the chemical potential.

(c) At which labeled point in Fig. 3 does the metastable gas state go unstable? This is
called a spinodal point. Which point a–j in Fig. 4 corresponds to this spinodal point for
the gas phase? In Exercise 11.3, we saw that the surface tension energy for nucleating a
bubble is related to the barrier in free energy between the two phases. At the spinodal
point, does the free energy barrier between the two phases disappear?

If one quickly changes the temperature or volume or other parameter across an abrupt
phase transition line, the phase transition qualitatively happens in one of two ways. It
can be nucleated by slow-forming bubbles or droplets. Or, if one moves into the unstable
region, it can undergo spinodal decomposition, spontaneously separating into two phases
without a nucleation barrier, with small random density fluctuations growing on many
length scales. The boundary between these two is blurry except in mean-field theories
like that of van der Waals.
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Fig. 5 Spinodal and two-phase regions for van der Waals water, as we vary density ρ
and temperature T .

The three points κ, λ, and µ in Fig. 5 correspond to our compression experiment
in part (c). We prepare the state at λ and µ by quickly decreasing from state κ at
t = 0 while cooling to keep T fixed, starting each in a uniformly compressed state
with only microscopic fluctuations. Assume the system is in very low gravity (so the
liquid water, when it forms, does not quickly fall to the bottom). For each, consider
the density ρλ(h, t) and ρµ(h, t) along a one-dimensional line h rising from the bottom
to the top.

(d) Roughly sketch ρλ(h, t) as a function of h for three times: t = 0 just after compres-
sion, a time tdroplets when the line passes through a nucleated droplet or two (which have
yet to grow to equilibrium or fall to the bottom), and a much later time tequilib when it
is fully phase separated. (Hint: What fraction of the volume will be liquid?) Label your
density axis with the equilibrium densities of the liquid and gas at 550 K, and with the
initial density ρλ.

After evolving for a while at the same final conditions, a system which was launched
quickly with spinodal decomposition or slowly by nucleation will evolve into a rather
similar late-time state which coarsens with time.

(e) Roughly sketch ρµ(h, t) as a function of h at a time tspinodal when tiny random
thermal density fluctuations have been noticably magnified by the instability, but have
yet to approach the equilibrium densities of the two phases. Label your density axis with
the equilibrium densities of the liquid and gas at 550 K, and with the initial density ρµ.
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3. Cell signaling and mutual information.1 ©3
To survive, living systems must accurately measure and and respond to their environ-
ment. For example, E. coli bacteria famously execute a process called chemotaxis. By
sensing gradients in nutrients, they decide whether to to run (propel themselves for-
ward) or tumble (change direction) using their propellor-like flagella (see Exercises 2.19
and 2.22). The environmental signal is transmitted from the receptors on the cell sur-
face to the motors that control the flagella via a cascade of chemical reactions. These
cascades involve kinases – protein enzymes that are activated (phosphorylated) by reac-
tions that are catalyzed by upstream enzymes (the cell membrane receptors or another
kinase). The activated kinase has a finite lifetime, with dephosphorylation reactions
catalyzed by so-called phosphatase enzymes. Fluctuations in active kinase populations
carry the signal through the cascade. Multi-level cascades can amplify signals, enabling
sensitive detection of the environment, but also introduce noise due to the stochastic
nature of enzymatic reactions. In this problem we will investigate how cells can mitigate
this noise, optimizing the information transmitted by the signaling circuit.HATHCOCK et al.: NOISE FILTERING AND PREDICTION IN BIOLOGICAL SIGNALING NETWORKS 19

Fig. 1. Schematic diagram of a cellular signaling pathway, like the MAPK
cascade in eukaryotes. An environmental signal (a time-varying concentration
of extracellular ligands) is propagated through membrane receptors into pop-
ulations of activated kinase proteins. Each active kinase is turned on through
phosphorylation reactions catalyzed by a receptor or kinase protein in the level
above, and turned off through dephosphorylation catalyzed by a phosphatase
protein. Since an active kinase can phosphorylate many downstream substrates
before it is deactivated, the signal is amplified as it passes from level to level.
However, because the enzymatic reactions are inherently stochastic, noise is
introduced along with the amplification.

can increase from level to level, for example in a ratio like
1:3:6 seen a type of fibroblast [33]. In addition to acting like
an amplifier, a multi-stage cascade can also facilitate more
complex signaling pathway topologies, for example crosstalk
by multiple pathways sharing common signaling intermedi-
ates [34], or negative feedback from downstream species on
upstream components [33].

Let us focus for simplicity on a single stage of the cascade,
for example between the active kinase species X and Y shown
in Fig. 1. Along with amplification, there is inevitably some
degree of signal degradation due to the stochastic nature of the
chemical reactions involved in the push-pull loop [35], [36].
We can use the formalism of Section II-A to quantify both the
fidelity of the transduced signal and the degree of amplifica-
tion. Let us assume the signal is a stationary time series and
hence the kinase populations (in their active forms) have time
trajectories x(t) and y(t) that fluctuate around mean values x̄
and ȳ. If δx(t) = x(t)− x̄ and δy(t) = y(t)− ȳ are the deviations
from the mean, the joint stationary probability distribution
P (δx(t), δy(t)) allows us to measure the quality of information
transmission from X to Y in terms of the mutual information
I(δx; δy) defined in Eq. (4). Optimization means tuning system
parameters (for example enzymatic reaction constants or mean
total substrate / phosphatase concentrations) such that I(δx; δy)
is maximized. As described in the previous section, the tuning

is constrained to a subset of system parameters. We fix the
properties of the input signal and the added noise due to the
enzymatic loop (in the form of the associated power spectra
Pss, Pcs, and Pcc), and only vary the remaining parameters.
Let us partition the total set of system parameters into two
parts: the set " which determines the input and noise, and
the remainder #. We will identify these sets on a case-by-
case basis. Optimization is then seeking the maximal mutual
information over the parameter space #:

Imax(δx; δy) = max#I(δx; δy). (10)

This formulation means that we are assuming the input sig-
nal (which ultimately arises from some external environmental
fluctuations) is given, but we also fix the degree of noise cor-
rupting the signal. In changing #, we are looking for the best
way to filter out this given noise for the given input signal.
The result, Imax, will depend on the input/noise parameters
" and we can then explore what aspects of " determine
Imax: are there particular features of the input signal (or noise
corruption) that make Imax higher or lower?

This optimization problem becomes significantly easier
if P (δx, δy) has the bivariate Gaussian form of Eq. (5),
which arises if the underlying dynamical system obeys lin-
ear Langevin equations, as mentioned earlier. The continuous
population approximation, which is a necessary prerequisite of
the Langevin description, is typically valid in signaling cas-
cades, where molecular populations are large. Linearization
of the Langevin equations can be validated by comparison to
exact numerical simulations of the nonlinear system [9]. If the
approximation is valid, maximizing I(δx; δy) becomes mathe-
matically equivalent to minimizing the scale-independent error
E of Eq. (3), since I = −(1/2) log2 E. To make the connec-
tion with the signal s(t) and estimate s̃(t) explicit, let us define
s(t) ≡ Gδx(t), and s̃(t) ≡ δy(t), where

G ≡ 〈δy2(t)〉
〈δy(t)δx(t)〉 . (11)

This allows Eq. (3) to be rewritten as:

E = 1 − 〈s̃(t)s(t)〉2

〈s2(t)〉〈s̃2(t)〉 = 1 − 〈δy(t)δx(t)〉2

〈δx2(t)〉〈δy2(t)〉
= minAε(δx(t), Aδy(t)) = minÃε

(
Ãδx(t), δy(t)

)
, (12)

where Ã = A−1, and the last equality follows from the defini-
tion of ε in Eq. (1). Thus G in Eq. (11) is precisely the value
of Ã that minimizes ε(Ãδx(t), δy(t)). In other words we can
interpret G as the amplification factor (or gain [31]) between
the deviations δx(t) and δy(t). One would have to multiply
δx(t) by a factor G in order for the amplitude of the scaled
fluctuations Gδx(t) to roughly match the amplitude of δy(t).
The gain G is in general distinct from the ratio of the means,
ȳ/x̄, which could be used as another measure of amplifica-
tion. Note that G and E are defined through Eqs. (11)-(12)
for any δx(t) and δy(t), whether or not the mutual information
I(δx; δy) is optimal. When we tune the system parameters #

such that I reaches its maximum Imax, the quantities G and E
will have specific values. In the examples below, optimality
will either exactly or to an excellent approximation coincide

𝖷

𝖸

𝗑(𝗍)

𝗒(𝗍)

Fig. 6 The simplest cellular signaling circuit involves: (i) the environmental signal
from extracellular ligands X, (ii) an kinase population Y within the cell, activated by the
membrane receptors. This minimal model is a coarse-grained representation of actual chem-
ical circuits that regulate chemotaxis in E. coli, olfactory (smell) sensing in mammals, and
yeast response to osmotic pressure [5, 2].

Let X(t) be the local concentration of food as the bacteria swims forward. This concen-
tration randomly fluctuates, driven by noise ξx due to both to the bacteria’s movement
and coupling to the environment, but changes relatively slowly, with a long correlation
time γ−1x . The dynamics of X are given by a Langevin equation, Ẋ = Ax−γxX+ξx(t),
where Ax keeps the mean food level X = Ax/γx positive. The cell’s measurement of
this signal is noisy: small numbers of food molecules randomly bump into the receptors,

1This exercise was developed in collaboration with David Hathcock.
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which in turn causes activation of R kinase within the cell. The dynamics of active
kinase population Y are given by, Ẏ = Ay + R(X −X)− γyY + ξy(t), where ξy is the
measurement noise, Ay is the background activation rate, and γy is the deactivation
rate, determined by phosphatase concentrations. As with X, γ−1y sets the time-scale
for fluctuations in Y . How can the cell tune γy to filter out the measurement noise at
the receptors and gain the most information about the food in its environment?

For our calculations, we will assume the terms ξa(t) with a = x, y are white noise with
correlation2 〈ξa(t)ξb(t′)〉 = 2Faδabδ(t − t′). Information is carried by the fluctuations
in X and Y about the mean values, X = Ax/γx and Y = Ay/γy; the bacteria wants
to swim toward locations where there is more food than average. Subtracting off the
means, x = X −X and y = Y − Y , we are left with,

ẋ = −γxx+ ξx(t) ẏ = −γyy +Rx+ ξy(t) (1)

The calculations in this exercise are somewhat involved, so we shall provide many
intermediate results to allow you to bypass parts if you get stuck. If you use a computer
algebra system (Mathematica™, SymPy, . . . ) please provide your code. If you use paper
and pencil, please show your steps and prune your dead ends.

(a) Fourier transform eqn (1) and solve for x̃(ω) and ỹ(ω). Express your answers in

terms of the Fourier transformed noise ξ̃x(ω), ξ̃y(ω) as well as γx, γy, and R.

If Cab(τ) = 〈a(t + τ)b(t)〉 is the correlation between a and b, then C̃ab(ω) = ã(ω)̃b∗(ω)

(see Appendix A). For example, the noise correlation relation becomes ξ̃a(ω)ξ̃∗b (ω) =

2Faδab and the equal time correlation is Cab(0) = 1/(2π)
∫
dω ã(ω)̃b∗(ω). For the next

parts, the following integrals are useful:

1

2π

∫ ∞
−∞

e−iωtdω

ω2 + c2
=
e−c|t|

2c

1

2π

∫ ∞
−∞

dω

(ω2 + c2)(iω + d)
=

1

2c(c+ d)

1

2π

∫ ∞
−∞

dω

(ω2 + c2)(ω2 + d2)
=

1

2cd(c+ d)

(b) Show that x(t) has exponential time correlations, Cxx(τ) = Fx/γx exp(−γx|τ |). As
we mentioned above the signal has a correlation time scale set by γ−1x .

(c) Show that the equal time correlations are Cxx(0) = Fx/γx, Cxy(0) = FxR/(γ
2
x+γxγy)

and Cyy(0) = FxR
2/(γ2xγy + γxγ

2
y) + Fy/γy. To simplify the notation below, we will

define σ2
x = Cxx(0), σ2

y = Cyy(0), and covxy = Cxy(0).

So far, we have understood the fluctuations and correlations in two chemical popula-
tions: food molecules in the environment and signaling proteins within the cell. How
can we use these to quantify the information gained by the bacteria? Fortunately,

2If the number of molecules attaching to the receptor is the cause of the noise (this is called shot noise),
then Fx = Ax and Fy = Ay.
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Shannon explored this question in his seminal work on information theory. He devel-
oped the machinery of information entropy when working for the telephone company.3

The phones in those days had lots of static. How could one calculate when the static
noise made it impossible to hear the words? Shannon introduced the idea of a mutual
information between the original signal and the noisy final signal.

Suppose the probability distribution of an original message x is ρX(x), and the probabil-
ity distribution of x being turned into a noisy final message y is ρT (y|x) (the probability
of y given x). This transmitted probabilty distribution can be written in terms of the
joint probability distribution ρX,Y (x, y) – the likelihood of a random transmission hav-
ing original message x and final noisy message y. Note that ρX(x) =

∫
dy ρX,Y (x, y)

and similarly for ρY (y).

(d) Express in words the true statement ρT (y|x)ρ(x) = ρX,Y (x, y) in a way that would
convince a non-scientist.

The mutual information4 is defined to be

I(X, Y ) = kS

∫
dx

∫
dy ρX,Y (x, y) log

(
ρX,Y (x, y)

ρX(x)ρY (y)

)
, (2)

The mutual information is symmetric in X and Y . How can it be used to study how
much the noisy final signal y tells us about the original signal x?

(e) Show that I(X, Y ) = S(X)− S(X|Y ), the entropy of the probability distribution of
general noisy input signals ρX(x) minus the entropy of the noisy signals resulting in a
particular received signal y, ρT (x|y), averaged over y (Hint: the identity from part (d)
also holds if we swap x and y. Plug this in and separate the log into a difference of
two terms). Explain in words why the first measures your ignorance of the message X
before getting a telephone call Y , and the latter is your average ignorance after a call.

To compute the mutual information for the cell signaling system, we require the joint
distribution ρX,Y (x, y). In general, for systems driven by white-noise (with delta-
function correlations), this is done by converting the Langevin equations into a Fokker-
Planck equation (see Exercise 8.22), which can then be solved to obtain the equilibrium
distribution. When the equations are linear (as is the case for our model, eqn (1)), one
finds that the joint distribution is a bivariate Gaussian5,

ρX,Y (x, y) =
1

2πσxσy
√

1− r2
exp

(
− 1

2 (1− r2)

(
x2

σ2
x

+
y2

σ2
y

− 2rxy

σxσy

))
. (3)

Here, the standard deviations σx = 〈x2〉1/2 and σy = 〈y2〉1/2 and correlation r =
〈xy〉/(σxσy) = covxy/(σxσy) are precisely those you computed in part (c).

3This was in the olden days, when there was only one phone company in the US, Bell Telephone.
4The mutual information is also the distance in probability space between the joint distribution ρX,Y (x, y)

and the uncorrelated case ρX(x)ρY (y), using a distance measure called the Kullback–Liebler divergence (see
Exercise 1.16).

5This is a generalization of a familiar result from statistical mechanics: the Boltzmann distribution for an
over-damped harmonic oscillator (which feels forces linear in the displacement) is Gaussian.
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(f) Argue that the marginal distributions ρX(x) and ρY (y) are also Gaussian, with
widths σx and σy respectively. Show that the mutual information for the bivariate
Gaussian is −(kS/2) log(1−r2). Interpret this result for r → 0 and r → 1. Is the mutual
information dependent on the magnitude of the fluctuations? (Hint: what happens if
we scale x→ αx).

Biologically, the rate γy is easiest to tune (e.g. through evolution and natural selec-
tion). This rate is controlled by concentrations of phosphatase in the cell, whereas the
activation rate R requires energy dissipation.

(g) Argue that maximizing mutual information is equivalent to maximizing r2. Show
that r2 = ZΛ/((1 +Z)(1 +Z+ Λ)), where Z = γy/γx and Λ = FxR

2/(Fyγ
2
x). Maximize

r2 with respect to γy. Show that when the information transmission is optimized, γy =
γx
√

1 + Λ and I = 1/2[kS log(1 +
√

1 + Λ)− 1].

With all else fixed, there is an ideal response time: γ−1y must be faster than γ−1x by the

factor 1/
√

1 + Λ. If γy is too small, Y will integrate over the changes in X, filtering
out too much of the the signal. On the other hand, if γy is too large, Y will fail to
filter out enough of the noise introduced at the cell receptors. The mutual information
quantifies how much information the cell has about the current state of its environment,
obtained by measuring the history of the signal and filtering out receptor noise. The
dimensionless parameter Λ serves as a measure of the signal fidelity. When Fx � Fy,
then Λ� 1: it is easy to reproduce the signal if the magnitude of fluctuations in X are
large compared to the noise introduced by the receptors. On the other hand if Fx ≈ Fy,
Λ = R2/γ2x, which measures the sensitivity of Y to changes in the X population over
the timescale γ−1x . Real biological signaling circuits, like those in yeast and E. coli,
tend to lie in the range Λ = 100− 1000.

(h) For the range of Λ listed above, how much information, in bits, can the cell learn
about its environment from monitoring Y (t)?
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Graduate (6562 only)
Questions 4-5

4. Emittance and particle beams.6 ©3
Particle accelerators take bunches of protons and antiprotons up to near the speed
of light, and smash them head-on to see what happens. Electron microscopes take
bunches of electrons and focus them to image materials at the atomic scale. X-ray
sources accelerate electrons to near the speed of light, and use undulators to wiggle
them to create X-rays (synchrotron X-ray sources) or free electron lasers (coherent
beams of X-rays). In all of these applications, in addition to the energy per ion and the
number of ions, the key property of a good bunch is its emittance. In this exercise, we
shall explain why emittance is important, relate it to the entropy of the bunch, analyze
its quantum limit, and explore the use of electron bunches to cool bunches of protons.

The 3D emittance of a bunch is loosely given by the product of the volume it occupies
in position space and in momentum space:

ε = (∆qx∆px)(∆qy∆py)(∆qz∆pz). (4)

For our purposes, ∆q and ∆p will represent the standard deviations of the positions
and momenta in the center of mass frame of the bunch. Here z is the ‘longitudinal’
direction in which the beam is moving, and x and y are ‘transverse’. For synchrotrons,
y is the direction perpendicular to the circular orbit and x the direction in the plane
of the circle perpendicular to the motion. One also speaks of the 2D emittance of the
transverse directions (∆qx∆px)(∆qy∆py) perpendicular to the velocity of the bunch, or
the 1D emittance along one of the axes.

Emittance is a limiting parameter in the performance of any accelerator. In electron
microscope/diffraction accelerators, the emittance limits the resolution; in colliders, it
limits the luminosity; in free electron lasers, it limits the gain length and the minimum
wavelength of the laser. Reducing beam emittance is therefore desirable, and it is a
central research goal of the Center for Bright Beams (CBB), a collaboration in which
Cornell plays a leading role.

At the Large Hadron Collider (LHC), the bunches have N = 1.2×1011 protons, a bunch
radius of σq = 3.5µm, and a transverse emittance of 3.75µrad = 1.88 10−24 kg m2/s,
implying a RMS bunch momentum of σp = 5.4× 10−19 kg m/s.

The ions in a bunch are often nearly noninteracting and uncorrelated, with all ions
having nearly the same probability distribution in phase space. In this case, ρN(P,Q) =∏N

n=1 ρ(pn,qn). In this exercise, we shall focus on Gaussian bunches. We roughly
approximate the LHC bunch as a spherically symmetric Gaussian

ρLHC(p,q) =
e−q

2/2σ2
qe−p

2/2σ2
p

(2πσ2
q )

3/2(2πσ2
p)

3/2
. (5)

6This exercise was developed in collaboration with Michael Kaemingk. We have used real numbers as
input for this exam, but our assumptions for the calculations are not reliable. For example, real bunches are
not as tidy as our Gaussian model bunches, and their momentum spread is not thermal.
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(a) Write the formula for the 3D emittance of the bunch in eqn 4. Note that the kinetic
energy has the form of a thermal distribution. Write a formula for the temperature of
the bunch. Write the entropy

S = −kB〈log ρ〉 = −kB
∫
ρ log ρ

= −kB
∫

dP dQ ρ(P,Q) log ρ(P,Q)− 3NkB log h. (6)

(Warning: There is an error in the corresponding eqn 5.20 in the text.) Evaluate the
temperature and the entropy of the bunch using the LHC parameters above. Write a
formula for the emittance in terms of exp(S/NkB). We may view your last result as
a more rigorous definition of the emittance.

Thus, the emittance, like the entropy, can only grow as the bunch passes through accel-
erating fields and focusing magnets.7 Making a low emittance bunch, and keeping the
emittance low during its acceleration and focusing, is key to all accelerator applications.

Why do we care about the momentum spread ∆p in eqn 4, if we want a dense beam or
a sharp focus? The conservation of emittance forces a tradeoff between a narrow beam
and one that stays narrow as it moves.

The angular dispersion of a beam is due to the momentum spread σp: the momentum
in the transverse direction will make the beam grow in width. The angular spread in
a beam is given by the ratio of the transverse momentum spread ∆p over the mean
momentum of the ions in the forward direction. The latter, mv for nonrelativistic
motion (with m the particle mass) becomes mv/

√
1− v2/c2 = βγmc for a relativistic

beam, with β = v/c and γ = 1/
√

1− v2/c2. Thus the angular spread ∆θ = ∆p/βγmc
radians with respect to the direction of motion.

(b) An electron microscope has a beam with velocity v = 0.62c, a width σiq = 200µm
and a vertical emittance ε = 2.7×10−30 kg m2/s. What is its vertical momentum spread
σp? What is its angular spread ∆θi in radians? A lens system focuses the beam into a
smaller width 40µm, without increasing the entropy or changing its velocity. What is
the new angular spread ∆θf , in terms of ∆θi? How far can it propagate before the new
spread gives the beam a width larger than the original width σiq? (Rough estimates are
fine.)

One might be surprised that the ions in a bunch can be treated as non-interacting, given
the strong Coulomb interactions between particles. Indeed, these ‘space-charge’ effects
are important when the bunch is first formed. But as it reaches near the speed of light,
these interactions become much less important. Using an ultrafast electron diffraction
apparatus at Cornell as an example, the current state-of-the-art photoemission bunch
starts out as a bunch of radius 20µm in the transverse directions, and a duration of 200
femtoseconds. Suppose this beam is now placed in an X-ray Free Electron Laser and
accelerated to a speed very close to that of light (but leaving its duration fixed). The

7The beam can lower its emittance by emitting X-rays, which is important in synchrotrons and undulators.
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packet in the laboratory frame is 60µm long (roughly spherical). But the packet in the
laboratory frame is Lorentz contracted by a factor of γ ≈ 34000, so in the center of
mass frame it is a long tube of length γ× 60µm = 1.3 m. The force on the electrons in
the beam are mostly due to the charges within a distance along the tube roughly given
by the distance of the electron from the center of the tube (20µm), which in turn is
roughly 1/γ of the total. Furthermore, the motion due to these forces in the lab frame
takes γ times longer to happen in the lab frame due to time dilation. The two effects
combined imply that the Coulomb interactions are suppressed by 1/γ2, making them
basically negligible.

Strong transverse bunch shape anisotropy is also seen in electron beams in synchrotrons.
At the Cornell Electron Storage Ring (CESR), εx ≈ 500 eV m/c = 2.7× 10−25 kg m2/s
along the horizontal (x) direction, and εy ≈ 0.1 eV m/c = 5.3 × 10−29 kg m2/s along
the vertical direction:8 a factor of 1000 anisotropy! Indeed, one of the ambitious goals
in the accelerator community is to get the transverse emittance down to the quantum
limit.

(c) What would the vertical emittance ∆qy∆py be at the quantum limit, set by the
uncertainty principle? By what factor must CESR shrink their emittance to approach
this goal?

Liouville’s theorem implies that reducing the entropy or the emittance cannot be done
simply with the standard tools of accelerators (magnetic lenses, focusing solenoids,
bunchers, etc.). Instead, the beam must be coupled to another system into which the
entropy can be dumped. There are different methods for doing this, such as synchrotron
cooling, electron cooling, and stochastic cooling (for which Simon van der Meer received
the Nobel Prize in 1984). Here we will consider a simplified model of electron cooling.

Electron cooling is a mechanism by which an electron beam is used to reduce the
momentum spread, and therefore the entropy, of a beam of heavier ions. It is being
used in the Relativistic Heavy Ion Collider (RHIC), colliding gold ions to create a
quark-gluon plasma. The electron and gold ion beams are overlapped with nearly the
same velocity.

(d) Suppose a gold ion bunch with initial temperature TAu is put into thermal equilibrium
with an electron bunch of the same radius σq, the same number of particles N and a
temperature Te � TAu. What will the final temperature Tf of the gold ion beam be?
(You may ignore the interactions between the various ions.) Calculate the ratio of the
emittances εAu/εe and the beam angular dispersion ∆θAu/∆θe of the resulting gold ion
and electron bunches.

As the gold ion beam travels through the electron gas, it will experience two effects. One
is a drag force proportional to the velocity with respect to the center of mass. The other
is fluctuations due to individual scattering events with the electrons. In Exercise 6.18,
you found a fluctuation-response relationship between the noise and the drag coefficient

8The horizontal width is large because of the randomness introduced by the emission of X-ray photons as
the beam circles around.
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in simulations of Langevin dynamics for one-dimensional motion. The relationship you
found in that exercise was kBT = 〈∆p2〉/2η∆t. We express this relation in terms of
η, the inverse of the mobility, so the force on a moving gold ion is F = −ηv. (The
mobility is called γ in Exercise 6.18.) For us, ∆p is the root-mean-square momentum
change due to each collision, T is the temperature of the electron beam, and ∆t is the
time between collisions.

So, to find the drag force for a moving gold ion, we shall calculate the noise on a
stationary ion and use this relationship.

The geometry of collisions between electrons and ions via the Coulomb interaction is
complicated. One simplifying concept is that of a scattering cross section – the effective
circular disk that would suffer the same forces. For the densities of electrons and gold
ions in our two bunches, you may assume that a gold ion near the center of the electron
bunch has a cross section Σ = 0.1 nm2 = 10−19 m2. The momentum exchange in a
collision with that disk will solely depend on the momentum px of the electron, where
x is the axis perpendicular to that disk.

How big a momentum change will a gold ion have during a collision with an electron?
(How much momentum is exchanged when a ping-pong ball hits a car?)

(e) Taking the limit mAu/me →∞, what is the net change ∆p for the gold disk, given
a head-on elastic collision with an electron with x momentum px?

We can get the frequency of collisions from the cross section Σ, the density per unit
volume n and the momentum distribution of the electrons.

(f) What will the average time ∆t be between collisions with the stationary ion disk of
area Σ? What will the average squared momentum transfer ∆p2 be for these collisions?
What is the temperature kBT of the bath? (Rough estimates are fine.)

At the Relativistic Heavy Ion Collider (RHIC) work is underway to cool gold ions with
an electron beam. In one scheme, a gold ion beam circles a ring with circumference
C = 3.9km, and each turn passes through a segment of length 0.0078C with a co-moving
electron gas of density 108 cm−3 = 1014/m3 and momentum spread 1.2 10−23 kg m/s.
The electrons are refreshed continuously using a Cornell-invented energy recovery Linac.
The bunches are moving fast – their value of γ = 1/

√
1− v2/c2 = 105. Time dilation

makes the interaction time needed larger by a factor of γ.

(g) Using this result along with the temperature definition given above and the relation
from Exercise 6.18, find a formula for the inverse mobility eta. Using F = −ηv = ṗ,
find a formula for the exponential decay time τ for the gold ion velocity in the center
of mass frame. Evaluate it for RHIC’s electron cooling scenario.

i. What is the exponential decay time for the gold ion beam in the lab frame of RHIC?
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5. Nonabelian defects.9 Mathematics ©3
In this problem, we will try to understand the defects that occur in a liquid crystal
composed of a planar tri-headed molecule (Figure 7). The ordered states of this system
have all molecules in the same orientation, but with liquid translational order (randomly
placed centers). This exercise will explore subtle questions regarding classification of
nonabelian defects. It will explore braiding with mathematics related to the problems
of anyon statistics and topological quantum computing. And it will provide a complete
analysis of the transformation of one defect as it is pulled around another, explored in
the case of fingerprints in Exercise 9.17.

(a) (b)

Fig. 7 Dihedral molecules. (a) The tri-headed molecule studied in this problem. (b) The
molecular structure of 1, 3, 5-Trichlorobenzene, with a representation of a tri-headed molecule
superimposed [1]. If these molecules were to form a liquid crystal, the liquid crystal would
have the types of defects described in this exercise.

If the molecule 1, 3, 5-Trichlorobenzene (Fig. 7b), which has the same symmetry as our
cartoon molecule, had a liquid crystalline phase10 where they oriented parallel to one
another, one would find the defects we study here [1]. These systems are generally
called dihedral liquid crystals for reasons that we will explore shortly.11

9This exercise was developed in collaboration with Stephen Thornton.
10There is currently no experimental evidence for this specific type of liquid crystal.
11Note: Most papers on dihedral liquid crystals confine the molecules to the plane. We are allowing them

to rotate in 3 dimensions.
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(b)(a)

Fig. 8 Defects with molecules confined to the plane. Note that the molecules are at
random positions; the orientations are shown on a square lattice for convenience.

Figure 8 shows two defects (red points) around which the molecules swirl. Recall that
the winding number is defined as the fraction of a full rotation ∆φ/2π an object does
as we travel around a defect counterclockwise in real space. ∆φ has a sign associated
with it. Is the defect labeled by the winding number? In part (a) we find that the
answer is yes if the molecular “legs” are confined to the plane, but otherwise no:

(a) What are the winding numbers of the defects shown in Figure 8? If we allow the
molecules to rotate in three dimensions, are these two defects topologically equivalent?
(Hint: Try applying a rotation about various axes to all the molecules.)

We saw in part (a) that the molecular orientation, after following the path around a
defect, must return to an orientation related by the symmetry group of the molecule.
Our molecule has a dihedral symmetry group D3 (hence the name dihedral liquid crys-
tal). We imagine that the homotopy group (the nonequivalent possible circular paths
in the order parameter space) will be related somehow to D3.

D3 is a six element group, generated12 by two elements: a 2π/3 counter-clockwise
rotation a about an axis normal to the plane of the molecule (taken to face out of the
page for the planar configurations), and a flip x, rotating by π about a particular leg
of the molecule (the ‘bra’ in eqn 7). The multiplication rules can be discovered by the
three relations in the ‘ket’:

D3 =
〈
x, a

∣∣∣ x2 = 1, a3 = 1, xax−1 = a−1
〉
. (7)

We can also write out the full multiplication table (Table 1).

The group element gh is found in the row labeled by g and the column labeled by h.
This is important because D3 is nonabelian.

12A group is generated by a subset of elements (called generators) if every member of the group can be
represented by repeatedly multiplying generators and their inverses.
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D3 1 a a2 x xa xa2

1 1 a a2 x xa xa2

a a a2 1 xa2 x xa
a2 a2 1 a xa xa2 x
x x xa xa2 1 a a2

xa xa xa2 x a2 1 a
xa2 xa2 x xa a a2 1

Table 1: Multiplication table for the dihedral group D3. Note that the group is nonabelian:
gh is not equal to hg. The element gh would be found in the row labeled by g and the column
labeled by h.

(b) What are the symmetry group elements given by the paths in Fig. 8 (a) and (b)?
Explain in words why xax−1 = a−1. Use the multiplication rules to calculate xa2 ⊗ xa
and xa⊗ xa2. Compare your answers to those in the table.

We know from part (a) that two different dihedral symmetry group elements can be
topologically equivalent – so the defect strength is not just given by the element of D3.
We shall explore this further below. But first, let us see if the same dihedral symmetry
group element can correspond to two non-equivalent topological defects.

(b)(a)

Fig. 9 Two equivalent defects, one with the molecules confined to the plane, and the
other with one leg rotated to point ‘upward’.

(c) What is the winding number of the defect shown in Fig. 9(a)? If D3 were the
homotopy group, and we were to assign this defect an element of D3, which element
would it be? What does this suggest about the defect? Can we heal this defect by
rotating into the third dimension? Does the rotation into the third dimension shown in
Fig. 9(b) heal the defect in the order parameter field?

We need a homotopy group that somehow has a category for a defect that returns the
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molecule to its original orientation trivially (the identity element in D3), and somehow
also allows a defect to return the molecule differently (nontrivially) to the same labelling
of the legs (the element a3). There is a wonderful treatment of the topological theory
of defects by Mermin [3], which we draw upon here.

How can a 2π rotation in three dimensions be different from the identity? For those
experienced in quantum physics, rotating a spin 1/2 electron by 2π changes the sign of
the wavefunction. This is because the spin wavefunction is represented not by a vector,
but by a 2 × 2 unitary matrix in SU(2), and there are two SU(2) matrices for every
rotation in SO(3). Similarly, in our problem for every rotation g in D3 there are two
rotations ±g in Dic3: the 12-element dicyclic group, which is the first homotopy group
for our dihedral liquid crystal.13 The multiplication rules for Dic3 are

Dic3 =
〈
x, a

∣∣∣ x2 = −1, a3 = −1, xax−1 = a−1
〉

(8)

Here we presume that a corresponds to a 1/3 counter-clockwise turn. (We will not
write out the whole multiplication table.)

(d) View the defect in Fig. 9(a) as three 1/3 counterclockwise turns. What is the
homotopy group element in Dic3 for the defect? How did lifting to Dic3 fix the problem
we had in part (c)?

The rotation of the molecular orientation by 2π gives a net minus sign, just as for an
electron spin.

Now we still need to understand how the two defects in Fig. 8, with different group
elements (in both D3 and Dic3), can be the same defect. Mermin tells us that defects
with non-abelian homotopy groups are not classified by their homotopy group elements,
but by the conjugacy classes of the group. The conjugacy classes are subsets of the
group whose elements are related by conjugation. Two group elements g and h are said
to be conjugate if there exists a group element γ such that h = γgγ−1.

(e) Show in complete generality that the identity element g = 1 of a homotopy group
is the only element in its conjugacy class. Interpret this physically: can there be two
different ways of having no defect? One can check that −1 commutes with all other
group elements, implying that it too is the only element in its class.

Do the two defects in Fig. 8 indeed lie in the same conjugacy class?

(f) What is the homotopy group element β ∈ Dic3 for the defect in Fig. 8(a)? The two
defects in that figure combine to form no defect, so the defect in Fig. 8(b) must have

homotopy group element β̂ = β−1. Find a group element γ that shows β̂ = γβγ−1.

13Mermin tells us [3] that the order parameter space of our dihedral liquid crystal is SO(3)/D3 (the
continuous broken symmetry modulo the residual symmetry group). The first homotopy group of a simply–
connected group modulo a discrete subgroup is the discrete subgroup – but SO(3) is not simply connected.
He prescribes using the simply-connected universal cover SU(2), and the corresponding discrete group Dic3.
Thus Π1 (SO(3)/D3) ∼= Π1 (SU(2)/Dic3) ∼= Dic3.
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Is there a physical reason for this peculiar conjugacy class14 criterion? Indeed: it is
precisely the transformation of the defect β when it braids around another defect γ.

Braiding15 in three dimensions is associated with hair-styling: you take two or more
strings of hair or string and weave them over and under one another to form a kind
of rope. If we move a point defect with strength β in two dimensions around another
defect α (with the necessary continuous readjustments of the order parameter fields),
we can view the process as braiding in space-time.

x 12 3

�

✁

x

x

x

(a)

(d)

(b)

(c)

Fig. 10 Braiding two defects. (a-d) can represent the motion of a red two-dimensional
point defect around a brown defect in time, or a red line defect curling around a brown
line defect in three dimensions. (a) The red defect has strength β, measured by the path
beginning and ending at X. (The connection to X makes this a based homotopy class, which
is important for the argument but not crucial here.) (b-c) The defect is continuously dragged
around the brown defect of strength α. The measured strength cannot change, either as the
red defect continuously is dragged, or as the path anchored at X is continuously modified to
surround β without touching α. (d) When the red defect returns to its original position, the

original path 2 may measure a different strength β̂ than β measured by the deformed path
(1→ 2→ 3).

Figure 10 visually argues that a defect β encircling a defect α indeed changes its ho-

14The conjugacy classes of Dic3 are as follows:

C0 = {1} , C0 = {−1} , C1 =
{
a,−a2

}
, C2 =

{
a2,−a

}
,

Ceven =
{
x, xa2,−xa

}
, Codd =

{
xa,−x,−xa2

}
.

(9)

15Braiding is important for the study of anyons. Nonabelian braiding is important for topological quantum
computing.
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motopy group element.16 It argues that the original path β deforms into another path
(in the same homotopy class) as the defect circumnavigates α. This path becomes the
product of three simpler loops.

(g) In Fig. 10(d), what homotopy group elements g1, g2, and g3 correspond to the three

segments of the path? (The labels β̂ and α suggest the answers for two of the three.)

What is β, in terms of g1, g2, and g3?
17 What is β̂ in terms of β and α?

The schematic of braiding in Figure 10 is translated into a real configuration of our
order parameter with two defects in Figure 11.

(a) (b) (c)

Fig. 11 Braiding in practice. (a) The order parameter field in the vicinity of two defects.
(b) The order parameter field after one defect has been pulled a quarter-way around the
other. (c) The resulting order parameter field after the braiding process. Also, view the
evolution of the order parameter in time at the course Web site [6].

(h) What is the homotopy group element β ∈ Dic3 of the left defect in Fig. 11(a)?
What is the element α for the defect in the center of the figure?18 The central brown
defect does not change during the braiding process, just as in Figure 11. What is the
homotopy group element β̂ for the left defect in frame (c)? Use the group multiplication

rules (eqn 8) to verify that your prediction in part (g) for β̂ is correct.

16We found in Fingerprints (Exercise 9.17) that moving a dislocation around a disclination can change the
sign of its Burger’s vector. This too is due to a non-abelian homotopy group, discussed by Poenaru et al. [4]
in one of the founding papers in this field. They find that the combined order parameter space of rotations
and translations relevant for fingerprints is the Klein bottle. Its first homotopy group is nonabelian, which
provides an explanation for the dislocation annihilation in Fig. 9.36.

17 It turns out that there is ambiguity in whether a concatenation of two loops (traveling along 1 and then
2) with homotopy elements g1 and g2 corresponds to a single combined loop with homotopy element g1g2
or g2g1. However, once a convention is chosen, the element assigned to the concatenation of several loops
g1, . . . , gn is fixed. You are free to choose this convention.

18The element assigned to this defect also depends on multiple conventions, including whether the molecules
in Fig. 11 rotate up or down in the third dimension. Your choice of convention will affect the element α, but
not the result of the braiding β̂.
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