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These lecture notes give an elementary, intuitive, and hopefully self-contained (but by no means
comprehensive) introduction to the basics of conformal field theory (CFT) in two dimensions. The
aim is to develop just enough CFT from the ground up in order to understand and prove the
c−theorem, which reveals the deep and subtle connection between entropy, CFT (fixed point in
RG) and the direction of RG flow between them. The interested reader is referred to any of the
excellent monographs listed in the reference. CFT is a minimalist art. Enjoy the ride!
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1 The Scaling Limit: From Lattice To Field

We start with the regular Ising model on a d−dimensional lattice D. Each lattice point has a
spin s(r) = ±1 and any particular spin configuration appears with probability proportional to

W({s(r)}) = exp(
∑
r,r′∈D

J(r − r′)s(r)s(r′)) (1)
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where the spin–spin interaction J(r− r′) is assumed to be short-range measured in lattice constant
a. Same old story. Now we would like to do measurements on the lattice. We assume that any
observable quantity on the lattice is local, which means that any measurement done at site ~r, call
it φlat(~r), can only gather information of spins a few lattice sites away.

The quantity of interest to us is the lattice correlation function

〈φlat1 (~r1)...φlatn (~rn)〉D =
1

Z

∑
{s(r)=±1}

φlat1 (~r1)...φlatn (~rn)W({s(r)}) (2)

where Z =
∑
{s(r)=±1}W({s(r)}) is the partition function. Since all interactions are short-range

and all observables are local, intuitively distant spins should not know each other’s existence! The
length scale where two distant spins de-correlate is given by the correlation length ξ, which can be
formally defined by the exponential decay rate of the lattice correlation function above.

Now comes the big moment. What if we add more and more spins into the system by taking
the lattice spacing a → 0 while keeping the size of the domain D and correlation length ξ both
fixed? Fixing D and ξ is absolutely crucial. In some sense we are doing the exact opposite of RG
coarse-graining – introducing more microscopic degrees of freedom without changing the macro-
scopic correlations. Taking the scaling limit of the lattice model gives us a continuum field theory.

What can we possibly get by taking this limit? Scale invariance! To take the a→ 0 limit is to
modulo out the shortest length scale so that the system has a chance to look self-similar when we
zoom in arbitrarily closely. A familiar example is the Brownian motion, which is just the scaling
limit of discrete random walk when both time and space intervals are scaled to zero.

2 Correlation Functions, Scaling Fields and OPE

What happens to the lattice correlation function under scaling limit? Most of them diverge.
Why? Because the continuum limit of a lattice model is not itself a lattice model! Okay, fair enough.
But what’s the big deal? Well, in the lattice model we can define a perfectly fine observable φlat+ (~r)
which is the sum of all spins with distance ξ from the site s(~r). However, in the scaling limit this
quantity is not well defined since it becomes the sum of infinitely many spins we stick into the
system within ξ from s(~r)! On the other hand, the average of all spins (i.e. magnetization) with
distance ξ from s(~r) is well defined. The price we pay is that the fundamental degree of freedom
is now a continuous function φ(~r) instead of discrete spins s(~r).

This intuitive argument can be generalized. Though most lattice correlation functions diverge,
there exist certain linear combinations of local lattice observables which are multiplicatively renor-
malizable, that is, they have a well-defined the continuum limit given by

〈φ1(~r1)...φn(~rn)〉D = lim
a→0

a−
∑n

i=1 xi〈φlat1 (~r1)...φlatn (~rn)〉D (3)

where the quantities φj(~rj) on LHS are called scaling fields (or scaling operators, especially in
quantized versions of CFT) and the constants xi is the scaling dimension of the operator φi. In
case you haven’t already noticed, these are exactly the quantities that appear in the plain old RG
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flow equation! The correlation function of scaling fields defined above will be the central quantity
of interest in the subsequent discussion of CFT.

Exercise 2.1 We now perform our first conformal transform r → r′ = br where the constant b > 0
is the familiar scale factor in RG. This also maps the domain D → bD.

(a) Using only the definition of continuum correlation function (3), derive the power law scaling
relation between the correlation functions 〈φ1(b~r1)...φn(b~rn)〉bD and 〈φ1(~r1)...φn(~rn)〉D. Does this
look familiar to an RG flow equation?

(b) Now consider a general mapping φ : D → D′ such that r → r′ = φ(r) is locally equivalent
to composition of dilatation and rotation. Denote the Jacobian b(r) = |∂r′/∂r| = |φ′(r)|. Guess
the conformal covariant scaling relation between 〈φ1(r′1)...φn(r′n)〉D′ and 〈φ1(r1)...φn(rn)〉D. Your
expression should agree with your result from (a) when b is a constant (i.e. uniform dilatation).

As with correlation functions in QFT, the correlation function 〈φ1(~r1)...φn(~rn)〉D is singular
whenever |~ri − ~rj | → 0, keeping all other positions ~rk fixed. You might think that the functional
form of the correlation function has a rather subtle analytical structure – and you are exactly right!
As well will see, all the fascinating properties of CFT are deeply rooted in the analytical structures
of its correlation functions. In other words, the correlation functions contain all the necessary
data to specify a CFT. Note the conspicuous absence of any particular Hamiltonian. How is this
possible? Because each CFT actually represents a universality class of Hamiltonians! Voila!

So how do we see the analytical structures of correlation functions? The powerful tool we need
is Operator Product Expansion (OPE), which states that

〈φi(~ri)φj(~rj)...〉D =
∑
k

Ckij(|~ri − ~rj |) 〈φk(~rj)...〉D (4)

where ... in the correlation function represents any arbitrary insertion of operators at positions
sufficiently far from ~ri and ~rj . In fact, it can be proved that OPE as defined above has its radius
of convergence exactly at the next nearest operator insertion from ~ri and ~rj , though this is not too
important for our purpose since we are mainly interested in the singularity as |~ri − ~rj | → 0.

OPE is so commonly used in CFT that it has been chiseled into our reflex system. Note the
striking similarity between OPE and Taylor expansion shown below (where we have dropped the
other operator insertions in OPE for clarity). Both approximate a function evaluated at a nearby
point ~ri by an infinite sum of functions evaluated at the current point ~rj . Their difference is also
significant. The OPE coefficients Ckij(|~ri − ~rj |) depend on the types of both operators φi and φj in
the product as well as the new operator φk it brings to the infinite sum.

φi(~ri)φj(~rj) =
∑
k

Ckij(|~ri − ~rj |) φk(~rj) (5)

f(xi) =

∞∑
n=0

(xi − xj)n

n!
f (n)(xj) (6)

It is interesting to note that OPE closely resembles the Lie algebra of nonabelian Lie group
φiφj =

∑
k C

k
ij φk with Ckij being the familiar structure constant. Also, the choice we made to
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evaluate φk at ~rj on RHS of OPE is completely arbitrary. An equally valid choice is the midpoint
(~ri + ~rj)/2 or essentially anywhere near both ~ri and ~rj but far from the other operator insertions.

Exercise 2.2 Consider the same conformal transform r → r′ = br. Using OPE (4) and the scaling
relation of correlation functions you derived in the previous exercise, derive the scaling relation of
OPE coefficients Ckij(b|~ri − ~rj |) and Ckij(|~ri − ~rj |). Deduce that the OPE expansion looks like

Ckij(|~ri − ~rj |) =
ckij

|~ri − ~rj |νijk
(7)

Find the expression of the critical exponent νijk with the scaling dimensions xi, xj , and xk.

You have just shown that given a CFT, the two-point function is completely fixed by the uni-
versal OPE coefficients ckij and scaling dimensions! Nowhere have we used Lagrangians, Gaussian
integrals, Feynman diagrams, or any small-parameter expansions, and yet the result (7) is exact
and nonperturbative! I hope you are impressed so far. But the real magic is just about to begin.

3 CFT in 2 Dimensions

We now restrict our discussion of CFT in two dimensions. A conformal transformation f is a
map between domains f : D → D such that the metric tensor is invariant up to an overall position-
dependent factor gµν(r)→ Ω(r)gµν(r). An immediate consequence is that at any point p ∈ D, the
angle formed by tangent vectors of any two curves intersecting at p is preserved by the transform.

3.1 2D Conformal ⇐⇒ Holomorphic

It turns out that conformal transforms in d = 2 correspond to holomorphic functions on the complex
plane C. So see this, it’s better to use the complex coordinates

z = r1 + ir2 z̄ = r1 − ir2 (8)

and more generally any vector field ~v(~r) = (v1, v2) can be written as

vz(z, z̄) = v1(~r) + iv2(~r) vz̄(z, z̄) = v1(~r)− iv2(~r) (9)

where z and z̄ on vz and vz̄ are called conformal indices. Why do we need a separate definition
of vz̄ at all, since it is just the complex conjugate of vz? In fact we don’t. For most purposes vz̄

carries no additional physical information than vz but rather serves as a convenient notation which
tremendously simplifies the tensor expressions, as we shall see. The metric becomes

ds2 = (dr1)2 + (dr2)2 =
(dz + dz̄

2

)2
+
(dz − dz̄

2i

)2
= dzdz̄ (10)

so we can read off the metric tensor in conformal indices (µ, ν):

gµν =

(
0 1

2
1
2 0

)
gµν =

(
0 2
2 0

)
(11)
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Note that we must be careful when raising and lowering tensor indices since it introduces factors
of 2 and swaps the conformal indices:

vz = gzµv
µ =

1

2
vz̄ vz̄ = gz̄µv

µ =
1

2
vz (12)

Finally we define the derivative operators

∂z =
1

2
(∂1 − i∂2) ≡ ∂ ∂z̄ =

1

2
(∂1 + i∂2) ≡ ∂̄ (13)

so that ∂z = ∂̄z̄ = 1 and ∂̄z = ∂z̄ = 0. We will use ∂ and ∂̄ exclusively from now on.

Exercise 3.1.1 Let’s now stretch our conformal muscles! Consider the general transform rµ →
r′µ = rµ + αµ(r) in R2 where αµ(r) is infinitesimal. It turns out that such mapping is conformal
transform iff the local shear component vanishes, i.e.

αµ,ν + αν,µ − αλ,λ g
µν = 0 (14)

where αµ,ν = ∂αµ(r)/∂rν . (Caution: watch out the indices!) Write (14) in conformal indices to get
four equations. Show that two of them are trivially satisfied while the other two are equivalent to

∂̄αz = 0, ∂αz̄ = 0 (15)

You have just shown that the infinitesimal mapping α is conformal iff αz is holomorphic (i.e,
∂̄αz = 0)! Very nice, isn’t it? The generalization to finite case is straightforward: z → z′ = f(z) is
conformal iff f is holomorphic since ds2 = dzdz̄ → df(z)df̄(z̄) = ∂f(z)∂̄f̄(z̄)dzdz̄ = Ω(z, z̄)dzdz̄.

3.2 Complex Scaling Dimensions

Let’s start from the simplest finite conformal transform in 2D: uniform dilatation and rotation.
In complex coordinates z and z̄, this cooresponds to multiplication by a constant complex number
z → z′ = beiθz ≡ λz where b, θ ∈ R are constant. Consequently z̄ → be−iθz̄ = λ̄z̄.

Consider any operator φj(z, z̄). We say that φj has conformal spin sj (which bears no relation
to spins of elementary particles) if it transforms under z → λz as

φj(z, z̄)→ eisjθφj(λz, λ̄z̄) = b−xjφj(z, z̄) (16)

where xj is the usual scaling dimension of φj defined in (3). Since a single λ ∈ C comes in more
handy to describe this transform, we would like to define the above scaling relation as

φj(λz, λ̄z̄) = λ−∆j λ̄−∆̄jφj(z, z̄) (17)

Comparing the two equations, we find that xj = ∆j + ∆̄j and sj = ∆j − ∆̄j , where the doublet
(∆j , ∆̄j) are called the complex scaling dimensions of φj . This is another unfortunate nomenclature
(together with second quantization and renormalization group) which serves to confuse more than
elucidate its physical meaning since (∆j , ∆̄j) are both real numbers!

In essence, we are just trading (xj , sj) → (∆j , ∆̄j). What did we gain from this trade? Well,
doesn’t (17) look awfully like the plain old scaling equation φj(brj) = b−xjφj(rj)? Yeah, as you
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probably have guessed by now, (∆j , ∆̄j) allow us to generalize the scaling relation to arbitrary
conformal transforms z → z′ = f(z) in a very natural, elegant, and easy-to-remember way:

〈φ1(z′1, z̄
′
1)...φn(z′n, z̄

′
n)〉 =

n∏
j=1

(∂f(zj))
−∆j (∂̄f̄(z̄j))

−∆̄j 〈φ1(z1, z̄1)...φn(zn, z̄n)〉 (18)

3.3 Stress Tensor

So far our discussion have been based on abstract notions of operators φj which could be de-
scribing the exotic physics of strings, ether or evil little aliens. Now we introduce our first concrete
operator – the stress tensor – which brings back the long-lost concepts of energy and momentum.

Consider again an infinitesimal transform rµ → r′µ = rµ + αµ(r), where α is not necessarily
conformal. The stress tensor is defined by the change of the action δS under this transform:

δS ≡ − 1

2π

∫
Tµνα

µ,
νd

2r =
1

2π

∫
(∂νTµν)αµ(r)d2r (19)

where we integrate by parts in the second equality. If αµ(r) corresponds to a symmetry of the
system, δS = 0. The transformations of particular interest to us are:

Translation: αµ(r) = aµ is constant, then δS = 0 =⇒ ∂νTµν = 0 (conserved).

Rotation: αµ(r) = ωµν rν where ωµν + ωνµ = 0, then δS = 0 =⇒ Tµν = Tνµ (symmetric).

Dilataion: αµ(r) = brµ = bgµνrν , then δS = 0 =⇒ Tµνg
µν = Tµµ = 0 (traceless).

So what does the stress tensor look like if we use the conformal indices? Well, since Tµν is a
rank (0, 2) tensor, it transforms covariantly under the coordinate transform (x, y)→ (z, z̄):

T (z, z̄) ≡ Tzz =
∂xµ

∂z

∂xν

∂z
Tµν =

1

4
(Txx − Tyy) +

1

4i
(Txy + Tyx) (20)

T̄ (z, z̄) ≡ Tz̄z̄ =
∂xµ

∂z̄

∂xν

∂z̄
Tµν =

1

4
(Txx − Tyy)−

1

4i
(Txy + Tyx) (21)

Tzz̄ =
1

4
(Txx + Tyy) +

1

4i
(Txy − Tyx) (22)

Tz̄z =
1

4
(Txx + Tyy)−

1

4i
(Txy − Tyx) (23)

What on earth just happened? The stress tensor in conformal indices becomes a crazy complex
linear combination of its Eucliedean components and loses the usual “energy” or “momentum”
interpretation. It might help to understand this as the nirvana of the stress tensor in CFT, where
we sacrifice the physical “energy–momentum” in order to conjure up the bewildering conformal
magic of T (z), which is just about to take stage. Before we move on, take a moment to convince
yourself that under rotation by π/2 (or equivalently z → iz), we have Tzz → −Tzz and Tzz̄ → Tzz̄.
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Exercise 3.3.1 Let’s derive an important property of the stress tensor in two dimensions. Write
down the above three constraints of the stress tensor with conformal indices Tzz, Tzz̄, etc. Show
that (1) Tµν is symmetric and traceless in Euclidean coordinates =⇒ Tzz̄ = Tz̄z = 0 and (2) Tµν
is conserved =⇒ ∂̄Tzz = ∂Tz̄z̄ = 0. This shows the stress tensor is diagonal, T (z) ≡ Tzz is a
holomorphic function and T̄ (z̄) ≡ Tz̄z̄ is antiholomorphic.

Exercise 3.3.2 Let’s do a quick sanity check with a free Gaussian scalar field in R2:

S[h] =
1

4π

∫
d2r ∂µh ∂

µh (24)

(a) Show that the action S[h] is invariant under global translation, rotation, and dilatation (hence
it’s a Gaussian fixed point under RG flow). Then find the equation of motion of the field h.

(b) Find the stress tensor Tµν in Euclidean coordinates by

Tµν =
∂L

∂(∂µh)
∂νh− gµνL (25)

(c) Compute T (z) and T̄ (z̄) and show that the equation of motion of h implies that ∂̄T (z) =
∂T̄ (z̄) = 0.

3.4 Conformal Ward Identity

Now we develop the final piece of the CFT machinery we need – the conformal Ward identity –
which reveals the elegant analytic structure of the stress tensor. Recall that a holomorphic function
can be expanded around a fixed point z0 ∈ C in its Laurent series:

f(z) =
∞∑

n=−∞
an(z − z0)n (26)

It is helpful to think of the Laurent series as a vector representation of the function f with the
basis vectors (z − z0)n and coefficients an. By Cauchy Integral Theorem, we can project out any
coefficient an via the contour integral along any closed contour γ which contains z0

an =
1

2πi

∮
γ

f(z)dz

(z − z0)n+1
(27)

Note that the holomorphic function (i.e. conformal transform) f has so much regularity in its
structure that all of its behavior inside any region Ω is encoded by its values at the boundary ∂Ω!

Now consider one such open and bounded region Ω ⊂ D which contains all the points z1, ..., zn of
an n−point correlation function 〈φ1(z1, z̄1)...φn(zn, z̄n)〉. We would like to construct an infinitesimal
transform rµ → r′µ = rµ + αµ(r) which is conformal inside Ω and identity inside its complement
Ωc = D\Ω. Since αµ,ν = 0 outside Ω, we have

δS = − 1

2π

∫
D
Tµνα

µ,
νd

2r = − 1

2π

∫
Ω
Tµνα

µ,
νd

2r

= − 1

2π

∫
Ω
∂ν(Tµνα

µ)d2r +
1

2π

∫
Ω

(∂νTµν)αµ(r)d2r

(28)
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Since α is conformal inside Ω, the stress tensor is conserved ∂νTµν = 0. Hence the second
term vanishes. In the first term, we are integrating a total derivative over a finite region Ω with
boundary. Using the divergence theorem, we have

δS = − 1

2π

∫
Ω
∂ν(Tµνα

µ)d2r

= − 1

2π

∫
∂Ω
Tµνα

µnνdl

= − 1

2πi

∫
∂Ω
T (z)α(z)dz + c.c.

(29)

where nν(r) is the outward pointing normal vector of the boundary ∂Ω and in the last equality we
have written δS in complex coordinates with the usual definition α(z) ≡ α1(r) + iα2(r). Stare at
the last equality in (29) and sense the sweet scent of Cauchy Integral Theorem in the air!

The infinitesimal transform αµ(r) also generates an infinitesimal change (i.e. linear response)
in the correlation function which is formally defined via the path integral

〈φ1(z1, z̄1)...φn(zn, z̄n)〉 =
1

Z

∫
Dh φ1(z1, z̄1)...φn(zn, z̄n) e−S0[h]−δS

≈ 1

Z

∫
Dh φ1(z1, z̄1)...φn(zn, z̄n) e−S0[h](1− δS)

= 〈φ1(z1, z̄1)...φn(zn, z̄n)〉0 + δ〈φ1(z1, z̄1)...φn(zn, z̄n)〉

(30)

hence the infinitesimal change to the correlation function is

δ〈φ1(z1, z̄1)...φn(zn, z̄n)〉 ≈ 1

Z

∫
Dh (−δS)φ1(z1, z̄1)...φn(zn, z̄n) e−S0[h]

= −〈δS φ1(z1, z̄1)...φn(zn, z̄n)〉0

=
1

2πi

∫
∂Ω
α(z)〈T (z) φ1(z1, z̄1)...φn(zn, z̄n)〉dz + c.c.

(31)

Exercise 3.4.1 We are almost ready to derive the conformal Ward identity! There are two extra
pieces of ingredients we need:

(a) If we take α(z) = ε ∈ C to be a constant infinitesimal translation, show that

1

2πi

∫
∂Ω
〈T (z) φ1(z1, z̄1)...φn(zn, z̄n)〉dz =

n∑
j=1

∂zj 〈φ1(z1, z̄1)...φn(zn, z̄n)〉 (32)

(b) If we take α(z) = λ(z − zj) to be a composition of rotation and dilatation, show that

1

2πi

∫
∂Ω

(z − zj)〈T (z) φ1(z1, z̄1)...φn(zn, z̄n)〉dz = ∆j〈φ1(z1, z̄1)...φn(zn, z̄n)〉 (33)
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where λ ∈ C is infinitesimal and you might find the conformal scaling relation (18) very useful.

(c) Using the results from part (a) and (b) as well as Cauchy Integral Theorem, show that the OPE of
T (z) with any operator φj(zj , z̄j), if treated as a single holomorphic function f(z) ≡ T (z)φj(zj , z̄j),
must contain the following singular terms in its Laurent series expansion

〈T (z) φj(zj , z̄j)...〉 =
( ∆j

(z − zj)2
+

1

(z − zj)
∂zj + ...

)
〈φj(zj , z̄j)...〉 (34)

where ... in the sum represents other possible terms in the Laurent series of the form (z − zj)n.

Now if we assume that the most singular terms in the Laurent series expansion (34) is O((z −
zj)
−2) for all operators φj(zj , z̄j), then the correlation function g(z) ≡ 〈T (z) φ1(z1, z̄1)...φn(zn, z̄n)〉

is a meromorphic function of z in Ω and is completely determined by its singularities

〈T (z) φ1(z1, z̄1)...φn(zn, z̄n)〉 =

n∑
j=1

( ∆j

(z − zj)2
+

1

(z − zj)
∂zj

)
〈φ1(z1, z̄1)...φn(zn, z̄n)〉 (35)

This is the conformal Ward identity! All operators such that the most singular term in their
OPE with T (z) is O((z − zj)−2) are called primaries while those with less singular leading terms
in their OPE with T (z) are called descendants. We have derived the conformal Ward identity as a
consequence of path integral under a given action S. What if we don’t know (or even care) about
S? Well, we just reverse the logic and use the conformal Ward identity (35) to define T (z)!

Exercise 3.4.2 The conformal Ward identity has an important implication:

(a) Inserting the Ward identiy (35) back into the integral on the RHS of (31) and evaluating the
contour integral, show that for a general infinitesimal transform α(z), we have

δ〈φ1(z1, z̄1)...φn(zn, z̄n)〉 =
n∑
j=1

(α′(zj)∆j + α(zj)∂zj )〈φ1(z1, z̄1)...φn(zn, z̄n)〉+ c.c. (36)

(b) Deduce that for a finite conformal transform z → z′ = f(z), we have

〈φ1(z1, z̄1)...φn(zn, z̄n)〉D =

n∏
j=1

(∂f(zj))
∆j (∂̄f̄(z̄j))

∆̄j 〈φ1(z′1, z̄
′
1)...φn(z′n, z̄

′
n)〉D′ (37)

which we recognize is nothing but the conformal scaling relation (18)! This is a crucial caveat which
we have previously glossed over: the conformal scaling relation only holds for primary operators!

3.5 Central Charge

We have seen that the stress tensor T (z) plays a major role in fixing the structure of CFT. The
OPE 〈T (z)φj ...〉 induces the notion of primary and descendant operators and generates the scaling
dimension ∆j . But is T (z) itself a primary operator? Answer: NO! In fact, the OPE is
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T (z)T (z0) =
c/2

(z − z0)4
+

2

(z − z0)2
T (z0) +

1

(z − z0)
∂T (z0) + ... (38)

where the constant c ∈ R is the conformal anomaly number or the central charge of the CFT. Note
that if c = 0, T (z) would have been primary. However, for any general CFT, c 6= 0. It turns out
that knowing the central charge c, together with the complex scaling dimensions (∆j , ∆̄j) and the
OPE coefficients ckij , is sufficent to completely specify the analytic structure of CFT!

Before we move on, we can repeat the same analysis as in Exercise 3.4.2 and deduce that for
an infinitesimal transform z → z′ = z + α(z), the linear response δT (z) is

δT (z) = 2α′(z)T (z) + α(z)∂T (z) +
c

12
α′′′(z) (39)

and for a finite conformal transform z → z′ = f(z), the transform of T (z)→ T (z′) is given by

T (z) = (∂f(z))2T (z′)− c

12
{f(z), z} (40)

where the last term {f(z), z} is the Schwarzian derivative of the function f (Ouch!):

{f(z), z} ≡
f ′′′(z)f ′(z)− 3

2f
′′(z)2

f ′(z)2
(41)

Exercise 3.5.1 Who ordered the central charge c? In this exercise we develop some physical intu-
ition of the central charge and compute the Schwarzian derivative of a simple conformal transform
f(z) = (2π/L) log(z), where log(z) = log |z|+ iArg(z) and 0 ≤ Arg(z) < 2π. Note that f maps the
entire complex plane onto a strip Σ with infinite length in the real direction u and finite width L in
the imaginary direction v. Don’t forget to impose the periodic boundary condition in the v direction!

(a) Calculate the Schwarzian derivative {f(z), z}. In this case it should be quite simple!

(b) Show that in the complex plane, 〈T (z)〉C = 〈T̄ (z̄)〉C = 0 by rotational invariance z → eiθz.

(c) Deduce from the transformation rule (40) that the corresponding quantity on the strip Σ is

〈T (z)〉Σ = 〈T̄ (z̄)〉Σ =
c

24

(2π

L

)2
(42)

(d) Show that the reduced free energy per unit length of the strip is

f0(L) = − 1

2π

∫ L

0
〈Tuu〉Σ dv = − πc

6L
(43)

(e) By imaginary-time path integral, we can treat the L×∞ strip as a one-dimensional quantum
system at finite temperature kBT = 1/L. Your answer from part (d) is then the reduced free energy
per unit length f/(kBT ) of this quantum system. Show that the specific heat is given by

C ∼
πck2

B

3
T (44)
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(f) Based on your results above, can you explain why the central charge c is effectively counting
the gapless degrees of freedom of the CFT?

Here comes the real magic: if c < 1, the possible values of central charge c must have the form

c = 1− 6

m(m+ 1)
(45)

where m ≥ 3 and m ∈ Z+ [5]. This (almost) magical constraint is a deep consequence of uni-
tarity and classifies all possible CFT with c < 1. In addition, the corresponding complex scaling
dimensions of the primary operators are completely classfied by the Kac formula:

∆ = ∆r,s =
(r(m+ 1)− sm)2 − 1

4m(m+ 1)
(46)

where 1 ≤ s ≤ m and 1 ≤ r ≤ m− 1. The corresponding CFT is called a unitary minimal model.

For the critical 2D Ising model, m = 3. Hence c = 1/2. If we take r = 2 and s = 1, we get
∆2,1 = 1/2 = ∆1,3. If we take r = s = 2, we get ∆2,2 = 1/16 = ∆1,2. If we instead look up the
scaling dimensions, we find that ∆σ = 1/8 = 2∆2,2 and ∆ε = 1 = 2∆2,1. Why the extra factor of
2? Well, each ∆r,s is counted twice due to the inherent symmetry ∆r,s = ∆m−r,m+1−s in the Kac
formula. The complex scaling dimension of each physical operator is the sum of two degenerate
scaling dimensions classified by the Kac formula. The tricritical Ising model has m = 4 and the
3-state Potts model has m = 5. Moreover, we know that (45) gives a valid CFT for each m ≥ 3
without even knowing any of its microscopic realizations! CFT indeed has too much structure!

4 The c−Theorem

4.1 Motivation

The basic CFT machinery we have developed so far already allows us to state and prove the
fascinating c−theorem, which resolves the question: can RG flows form closed orbits (from fixed
point A to another fixed point B and then back to A)? Intuitively this cannot happen since coarse–
graining effectively throws away (or averages over) short–distance degrees of freedom. How can
these UV degrees of freedom re–emerge in the long distance again? In fact, it is not even clear
what we mean by short distance any more! Since to get from A to B, we can either keep coarse–
graining or anti–coarse–grain backwards in time. If a weary traveler falls asleep at A and wakes up
at B, he cannot tell whether he has gone forward to the past or backward to the future1!

So what goes wrong if we allow time to go both ways? Entropy! Since the total entropy in any
isolated system can never decrease in “time”, our traveler can always tell how he has got from A to
B (either forward or backward in time) by measuring the entropy. Indeed, this intuitive argument
has already touched on the very essence of the c−theorem, which (in its full glory) states that

Theorem: There exists a function C({K}) of the coupling parameters {K} such that it is
(1) monotonically decreasing along any RG flow trajectory;
(2) stationary only at the fixed points {Kc};
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(3) equal to the central charge of the corresponding CFT at each fixed point.

In Exercise 3.5.1 we showed that the central charge c is effectively counting the degrees of
freedom (hence the entropy) in the system. Therefore, what the c−theorem really says is that
coarse–graining always lowers the entropy of the system. Hence RG flows must point from higher
entropy to lower entropy fixed points. It clearly follows that there cannot be closed orbits. Duh!

4.2 Proof via Stress Tensor

Although physically intuitive, the rigorous proof of the c−theorem poses extremely difficult
challenges in general dimensions. Miraculously, the rich analytic structure of correlation functions
in two–dimensional CFT yields a simple, elegant, and almost minimalist proof, provided that the
theory satisifes three additional constraints everywhere along the RG trajectory:

Translational Invariance =⇒ ∂νTµν = 0↔ energy and momentum conservation

Rotational Invariance =⇒ 〈φ(z, z̄)〉 = 0 and Tµν = Tνµ

Reflection Positivity =⇒ 〈φi(z1, z̄1) φi(z2, z̄2)〉 ≥ 0

It is critical to note that in our formulation of the c−theorem, every point along the RG flow is
a continuum field theory, where we have already taken the lattice constant a→ 0 in the correpond-
ing lattice model. Also, invariance under translation and rotation further rules out intrinsically
anisotropic systems (such as those with a spatially dependent magnetic field or potential). You
might think that this is too restrictive, since in practice there are also irrelevant, anisotropic op-
erators. However, remember that the point of the c−theorem is to establish whether an RG flow
between two fixed points A → B is possible at all. If A → B is impossible through isotropic
operators, it is certainly impossible if we turn on any irrelevant anisotropic operators!

Proof. The only ingredients we need are the stress tensor T = Tzz, its trace Θ(z, z̄) = T zz + T z̄z̄ =
4Tzz̄, as well as their two-point functions 〈TT 〉, 〈ΘΘ〉 and 〈ΘT 〉. Note that Θ(z, z̄) is non-zero along
the RG trajectory since the system is no longer scale invariant. We will still use OPE, though the
coefficients Ckij(|zi − zj |) are no longer simple power laws

Ckij(|zi − zj |) =
ckij

|zi − zj |νijk
(47)

but rather general functions F (|zi − zj |, {K}) which depend on the couplings {K} along RG flow
(which we shall suppress for clarity). Hence the two-point function 〈TT 〉 can be written as

1“So we beat on, boats against the current, borne back ceaselessly into the past.” –The Great Gatsby
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〈T (z, z̄) T (0, 0)〉 =
〈c/2
z4

+
∆T

z2
T (z0) +

1

z
∂T (z0) + ...

〉
→
〈F (zz̄)

z4
+
F1(zz̄)

z2
T (z0) +

F2(zz̄)

z
∂T (z0) + ...

〉
=
F (zz̄)

z4
+
F1(zz̄)

z2
〈T (z0)〉+

F2(zz̄)

z
〈∂T (z0)〉+ ...

=
F (zz̄)

z4

(48)

where we start from 〈TT 〉 of a CFT (38) in the first equality and generalize it to any point along
RG flow by replacing c/2→ F (zz̄), ∆T → F1(zz̄), etc. Note that rotational symmetry enforces z4

in the denominator (to make manifest the conformal spin sT = 2) and kills all 〈∂nT 〉 terms in the
OPE. Similarly, since the trace Θ(z, z̄) has conformal spins sθ = 0, we can express

〈Θ(z, z̄) Θ(0, 0)〉 =
H(zz̄)

z2z̄2
(49)

〈T (z, z̄) Θ(0, 0)〉 = 〈Θ(z, z̄) T (0, 0)〉 =
G(zz̄)

z3z̄
(50)

Now translational invariance implies that

∂µTµz = ∂zTzz + ∂ z̄Tz̄z = 2(∂z̄T +
1

4
∂zΘ) = 0 (51)

Inserting this into the two–point functions with T (0, 0) and Θ(0, 0), we get

∂z̄〈T (z, z̄)T (0, 0)〉+
1

4
∂z〈Θ(z, z̄)T (0, 0)〉 = ∂z̄

[F (zz̄)

z4

]
+

1

4
∂z

[G(zz̄)

z3z̄

]
= 0 (52)

∂z̄〈T (z, z̄)Θ(0, 0)〉+
1

4
∂z〈Θ(z, z̄)Θ(0, 0)〉 = ∂z̄

[G(zz̄)

z3z̄

]
+

1

4
∂z

[H(zz̄)

z2z̄2

]
= 0 (53)

which yields two linear first-order ODE (with Ḟ (zz̄) ≡ zz̄F ′(zz̄) and similarly for Ġ and Ḣ):

Ḟ +
1

4
(Ġ− 3G) = 0 (54)

Ġ−G+
1

4
(Ḣ − 2H) = 0 (55)

Now if we define C(zz̄) ≡ 2F −G− 3
8H and eliminate G from the above equations, we find that

Ċ = −3

4
H = −3

4
(zz̄)2〈Θ(z, z̄) Θ(0, 0)〉 ≤ 0 (56)

since 〈Θ(z, z̄) Θ(0, 0)〉 ≥ 0 by reflection positivity. Note that Ċ = 0 iff θ(z, z̄) ≡ 0, which means that
the system is scale invariant (i.e. at the fixed point)! Moreover, at each fixed point, G = H ∝ Θ = 0,
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hence C = 2F = c is the central charge of the corresponding CFT!

The only thing left to check is how C(zz̄, {K}) = C(R2, {K}) transforms under RG flow,
where we denote R ≡ |z|. Note that coarse-graining by a → a(1 + δl) amounts to calculating the
correlation functions at the new length scale R→ R(1 + δl) while keeping the couplings {K} fixed :

C(R2, {K})→ C(R2(1 + 2δl), {K})

= C(R2, {K}) + 2R2δl
∂

∂R2
C(R2, {K})

= C(R2, {K}) + δl
d

dl
C(R2, {K})

(57)

Hence we conclude that

Ċ(zz̄, {K}) = (zz̄) C ′(zz̄, {K}) ≡ R2 ∂

∂R2
C(R2, {K}) =

1

2

d

dl
C(zz̄, {K}) (58)

So Ċ indeed represents how C transforms under RG flow. In summary, we have found that
the function C(zz̄, {K}) is monotonically decreasing along the RG flows and, at each fixed point,
is stationary and equal to the central charge of the corresponding CFT. Sounds familiar? We did it!

This proof by Zamolodchikov [6] is minimalist – it simply extends the CFT machniery to de-
scribe two-point functions along RG trajectory and elegantly encode the gory calculations of RG
flow by F , G, and H. Nonetheless, c−theorem has deep implicaitons. For example, in the tricritical
Ising model, the unstable manifolds eminating from the tricritical fixed point (c = 7/10) can only
flow to the trivial fixed points (T = 0 or T =∞, c = 0) or the Ising fixed point (c = 1/2). There-
fore, the edges of the h 6= 0 wings of the tricritical fixed point must be in the Ising universality class!

4.3 Proof via Entanglement Entropy

It turns out that we can prove the c−theorem with an even more minimalist argument if we
simply focus on the RG flow of entanglement entropy [7]. Given any two–dimensional CFT in
Rx×Ry, we rotate one spatial dimension to imaginary time y → it and get Lorentz invariant QFT
in 1 + 1 dimensions. The proof relies on the following properties of entanglement entropy:

Conservation via Unitarity: SA = SA′ if A and A′ are related by unitary time evolution.

Strong Subadditivity: SA + SB ≥ SA∪B + SA∩B for any two spacetime intervals A and B.

In 2D QFT Vacuum: SA = SA(LA) where LA is the proper distance of A.

In 2D CFT Vacuum: SA = c
3 log(LA/aUV ) , where aUV is the UV–cutoff in spacetime.

Proof. We need the help of our good old friends Alice and Bob. At t = 0 in the rest frame F , Alice
can measure the entropy SA of the subsystem A and Bob can measure SB, where for fairness of
labor we have LA = LB. Now let’s boost Alice and Bob onto their merry ways to frames FA and
FB with equal but opposite velocities ±v with respect to F , as shown in Figure 1 below.
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Figure 1: Left: A and B in the same rest frame; Right: A and B in their boosted frames;

What can Alice measure in FA? Well, if we draw the causal diamonds, we find that A as seen
from its boosted frame FA is causally dependent upon X ∪ Y . Hence if we know everything about
the systems X ∪ Y , we can close our eyes, let time evolve, and get everything in Alice’s boosted
frame for free! No additional entropy is induced since unitarity ensures probability conservation!

Running through the same argument for Bob, we find that

SA = SX∪Y SB = SY ∪Z SY = SA∩B SU = SA∪B = SX∪Y ∪Z (59)

Note that strong subadditivity (SSA) says that

SA + SB ≥ SY + SX∪Y ∪Z = SY + SU (60)

Since the entropy depends only on the proper length, we can parametrize the lengths by LY = R
and LU = r with R < r. After some algebra we get LA = LB =

√
Rr. Hence SSA implies that

2S(
√
rR) ≥ S(r) + S(R) (61)

Now if we take r = R+ ε with ε� R and expand the above inequality to O(ε2):

2S(
√
R2 + εR) ≈ 2S(R+

ε

2
− ε2

8R
)

≈ 2S(R) + εS′(R) +
1

4
ε2S′′(R)− ε2

4R
S′(R)

≥ S(R+ ε) + S(R)

≈ 2S(R) + εS′(R) +
1

2
ε2S′′(R)

(62)

we get the inequality of the new function C(R) ≡ 3RS′(R):

RS′′(R) + S′(R) =
d

dR
(RS′(R)) ≡ 1

3

d

dR
C(R) ≤ 0 (63)

So what is C(R)? Recall that at each fixed point, the CFT entanglement entropy is given by

S(R) =
c

3
log(

R

aUV
) (64)
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Therefore, C(R) = 3RS′(R) = c is equal to the central charge at each fixed point! If we go back
to the original 2D CFT by it→ y, we can interpret change of the proper distance R→ r = R+ ε as
the spatial RG flow! To recap, we found a monotonically decreasing function C(R) along the RG
trajectory which is stationary and equal to the central charge of the corresponding CFT at each
fixed point. Sounds familiar? Thanks to the generous help of Alice and Bob, we did it again! This
time, we only used Lorentz invariance, unitarity, and the entropy formula (which actually requires
a rather technical derivation from the CFT machineary we have developed so far, see [1] for details).
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