
Sloppy Models: Parameters are hard to 
find, but predictions are possible. 

Implications for science



48 Parameter Fit!

Systems Biology: Cell Protein Reactions
Kevin Brown M

em
brane
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ucleus

Remember our systems biology model from the first lecture?



Numbers and notation
48 parameters  (kEGF, KmEGF…):  

29 nonlinear differential equations 
63 data points  

63 predictions : behavior  

Several experimental control variables 
* time t since stimulation by by EGF, NGF,  
* strength of stimulation u,  
* drug interventions v like [LY] [ red Xs],  

so  for experiment i. 

Predictions of collective behavior 
(It’s not sloppy if one does separate experiments 
for each parameter. Also, such experiments are 
usually useless to predict collective behavior.) 

θα Θ ∈ ℝ48

di
yi(Θ) y ∈ ℝ63

yi = yΘ(ti, ui, vi)

Let’s set up some notation. We have parameters in a 48 dimensional real vector space, and behaviors in a 63 dimensional space of experiments. We view y 
as a map from parameter space to behavior space. 

There are two other crucial ingredients. Our experiments have control variables, so the vector y_i should be viewed as y(t_i, u_i, v_i) for conditions t, u, and 
v.  And our experiments and predictions should be of collective behavior — no fair measuring each parameter independently! (Also



Ensemble of Models
We want to consider not just minimum cost fits, but all 
parameter sets consistent with the available data. New 

level of abstraction: statistical mechanics in model space.

Boltzmann weights exp(-C/T)

O is chemical concentration 
y(ti), or rate constant θn…

bare

eig
en

Don’t trust predictions that vary
Cost is least-squares fit

We do a Monte Carlo sampling of the Bayesian likelihood of different parameter sets, given the experimental data. We calculate error bars from our 
predictions y(theta) from the error bars sigma_i of the experimental data, by weighting the model predictions by exp(-C(theta)). We do a Monte-Carlo 
sampling of this nonlinear sum of squares. 



48 Parameter “Fit” to Data
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Ensemble of Fits 
Gives Error Bars
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And we find that we can indeed make quite useful predictions.



48 Parameter Fit to Data

Parameters are unknown

Sloppy direction
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The behavior is ill-
conditioned: it depends only 

on a few stiff parameter 
combinations.  

Eigenvalues of cost Hessian 
  

span enormous range
gμν = ∂μ∂νC(Θ)

Kevin Brown, Josh Waterfall
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<20%

We do a Monte Carlo sampling of the Bayesian likelihood of different parameter sets, given the experimental data. 
We cannot find 48 parameters from 63 data points. At upper left,  the parameters are ordered according to their fractional uncertainty: note that the best 
known parameter has a 5000% error, and note the log scale.
We can make predictions. At right we show a prediction of the model, with errors ~20% given from the same ensemble. What’s amazing is not that our 
predictions fit new experiments — it is that we can make predictions at all, given the enormous uncertainty in the parameters!
At lower left is our basic explanation, illustrated by a contour plot of the ‘cost’ C (squared error, aka chi squared). The axes are chosen along two of the 48 
eigenvalues of the cost Hessian g_mn (which will become the metric tensor later). Vertical is a stiff direction — small changes cross many contours; 
horizontal is a sloppy direction, for which large changes in that combination of parameters hardly matter. A few of the eigenvalues for our model are stiff; 
the other forty-some are sloppy. Later we shall use this to find emergent descriptions with fewer parameters.
Two more things. 
  (1) The original ‘bare’ parameters are tilted with respect to the eigenvectors — each of which varies a lot as we traverse the sloppy direction.
  (2) The vertical and horizontal scales differ by a factor of 1000. The real figure stretches about a kilometer to the right. 



Sloppy direction
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Parameter Indeterminacy and 
Sloppiness

A few ‘stiff’ constrained 
directions allow model to 

remain predictive

Note: Horizontal scale 
shrunk by 1000 times 

Aspect ratio = Human hair

48 parameter fits are 
sloppy: Many parameter 
sets give almost equally 

good fits

Cost Contours

“Bare Parameter 
Axes”

~5 stiff, ~43 sloppy directions
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So, the predictions as a function of parameters near the best fit form a really thin multidimensional hyper-ellipsoid. (This isn’t actually true — many of the 
sloppy directions of the Hessian are associated with directions in which the parameter combination could reach out to infinity! More on this later.) Only a 
few parameter combinations control the behavior.



Predictions are Possible

θ2

θ
1σ

1

How can we make predictions when all parameters are undetermined?  
— Almost all the parameters matter — shifting them by a factor of two 
ruins the fit. This is the range one can shift parameters without allowing 
others to vary: it is given by the diagonal elements of the cost Hessian, 

. 
— All parameters are badly determined. The range that parameters can 
vary allowing others to compensate is given by the diagonal elements of 
the inverse Hessian: . 

(σ2
α)fixed = 1/ℋαα

(σ2
α)collective = (ℋ−1)αα

Linear algebra tells us that one standard deviation of behavior depends on whether the other parameters are known and fixed, or whether they can adjust 
to compensate. 

Since our ellipsoids are extremely thin, and no parameters are parallel to the stiff axes, all our parameters are poorly determined.



Parameters 
Fluctuate 

over 
Enormous 

Range

• All parameters vary by 
minimum factor of 50, some 
by a million 
• Not robust: four or five 
“stiff” linear combinations of 
parameters; 44 sloppy
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But a few of the parameter combinations are well determined (lower left), because we choose them to move along the thin, stiff axes of the Hessian 
contours.



Systems Biology
Seventeen models

Enormous Ranges of 
Eigenvalues 

(348 is a big number) 
Sloppy Range ~ √λ

(a) eukaryotic cell cycle
(b) Xenopus egg cell cycle
(c) eukaryotic mitosis 
(d) generic circadian rhythm
(e) nicotinic acetylcholine intra-receptor 

dynamics
(f) generic kinase cascade
(g) Xenopus Wnt signaling
(h) Drosophila circadian rhythm
(i) rat growth-factor signaling
(j) Drosophila segment polarity 
(k) Drosophila circadian rhythm
(l) Arabidopsis circadian rhythm
(m) in silico regulatory network
(n) human purine metabolism
(o) Escherichia coli carbon metabolism
(p) budding yeast cell cycle
(q) rat growth-factor signaling

3×
Ryan Gutenkunst, Chris Myers

Ryan Gutenkunst, working with Chris Myers, wrote a wonderful Python software environment to interpret SBML files. (That’s ‘Systems Biology Markup 
Language’, which was all the rage for a short time.) All kinds of biological systems turned out to be sloppy. We wrote some papers saying that biological 
‘robustness’ (which then was a big exciting topic) was usually really sloppiness. 

* "Universally Sloppy Parameter Sensitivities in Systems Biology", Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R. 
Myers, James P. Sethna, PLoS Comput Biol 3(10) e189 (2007). (PLoS, doi:10.1371/journal.pcbi.0030189), https://sethna.lassp.cornell.edu/pubPDF/
SloppyEverywhere.pdf

*  "Sloppiness, robustness, and evolvability in systems biology", Bryan C. Daniels, Yan-Jiun Chen, James P. Sethna, Ryan N. Gutenkunst, and Christopher R. 
Myers, Curr Opin Biotechnol 19, 389-395 (2008), doi:10.1016/j.copbio.2008.06.008, https://sethna.lassp.cornell.edu/pubPDF/SloppyRobust.pdf

We’ll talk more about that later.



Sloppy Universality

Enormous range of  eigenvalues of        ; Roughly equal density in log; 
Observed in broad range of  systems. 

How can we use this to develop emergent laws?
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Many ask whether this is a biology-specific phenomenon — maybe we evolve to be sloppy? (Robustness was justified by those ideas.) Not so!

Sums of exponentials, quantum wavefunctions used in high-precision chemistry, our model for the cosmic microwave background radiation, and particle 
accelerators are all sloppy. (Particle accelerators have hundreds of tunable magnets, so they have more eigenvalues — but the same enormous range). We 
also see that physics models are sloppy (diffusion and Ising), here for reasons we understand. Only a few emergent parameters explain the behavior of 
systems at long length and time scales.



Hessian for perfect data is given 
by the Jacobian

ℋαβ ≈
∂2C

∂θα∂θβ
=

∂2

∂θα∂θβ (∑
i

(yi − di)2 /2σ2)
= (1/σ2)

∂
∂θα (∑

i

(yi − di)
∂yi

∂θβ )
= (1/σ2)(∑

i

∂yi

∂θα

∂yi

∂θβ
+ (yi − di)

∂2yi

∂θα∂θβ )
≈ (1/σ2)(JT J )αβ,

where

Jiα =
∂yi

∂θα

A good fit has y-d small. 
Second derivatives are 
expensive. 
Approximate Hessian is 
positive definite. (Sloppy 
minima often not perfect.)  
Quadratic approximation 
of distance between 
behaviors y as parameters 
are varied. 
Will be metric tensor on 
the model manifold.

Now, the Hessian for a 48 parameter model is a mess. But for a least-squares model that does a good job of fitting the data, the second derivative Hessian 
can be approximately written in terms of the first derivative J of the predictions! This Jacobian is the amount y twists and stretches parameter space into 
behavior space, and will be a focus of our attention. Also, if we want to measure the distances between nearby points on the model manifold, the 
approximate Hessian is exact, and J^T J becomes the metric on the model manifold.



Fisher Information is the Metric 
for probabilistic models

Natural distance (metric tensor) between nearby probability 
distributions, parameterized by 𝜃 (see exercise Hellinger) 

For least-squares models (Gaussian , FIM 
distance equals  
Cramér–Rao bound: uncertainties in  bounded below by 
inverse of Fisher Information matrix 
Machta (not me): Entropy cost for thermodynamic control is 
FIM path distance

P(y(Θ) − d)
|y(Θ1) − y(Θ2) | /σ

Θ

Fisher Information Matrix (FIM) measures distance

Fisher information matrix

g↵�(⇥) = �
⌧
@2logP (x)
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�

x

= �
Z

dxP (x)
@2logP (x)
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What is the metric for more general, probabilistic models, like an N-spin Ising model (which predicts the probability of 2^N spin snapshots), or the 
Lambda-CDM model for the Big Bang (which predicts the probability of seeing a particular fluctuating temperature map of the microwave background 
radiation for our particular Universe)? In Exercise Hellinger, we’ll motivate this Fisher Information Metric, which we’ll use next to study the Ising model and 
the sloppy renormalization group.



FIM for Stat Mech

Info Geom:  measures local dist

Stat Mech: . Second derivatives of  are physical!
    particle density 
    isothermal compressibility 

    thermal expansion coefficient 
    Specific heat at constant press 

FIM = gαβ(Θ) = − ⟨∂α∂β log ρ⟩

log ρ = βℱ ℱ
ρ = N/V

κ = − (1/V )(∂V/∂P)
T

α = (1/V )(∂V/∂T )
P

cP = (T/N )(∂S/∂T )
P

FIM = gαβ(Θ) = N (
−κ /ρT −α/ρT
−α/ρT cP /T2 )

Deep links in local distances

See exercise S2.3-5 (or text 6.20-22).  

The natural metric in least-squares fits is the distance between the predicted data points and the measured ones, as measured in units of the error bars. In 
more general problems, the predictions are probability distributions P(x), and the natural metric is the Fisher information metric. This metric measures 
distances on the manifold of model predictions (to be discussed next).



 Physics: Sloppiness and Emergence
Ben Machta, Ricky Chachra, Mark Transtrum

Emergence when 
only a few things 

matter

Ising: long bonds 
Diffusion: long hops 
Details irrelevant on 

macroscale

Ei
ge

nv
al

ue
s

Coarsening Steps

C
on

fig
ur

at
io

ns

1 2 3 4 5 60

101

103

105

10–1

10–3

10–5

S
tif

f
S

lo
pp

y
R

el
ev

an
t

Irr
el

ev
an

t

We studied Ising models using our sloppy model eigenvalues (here for the Fisher Information Matrix as g𝜇𝜈). The Ising model predicts the probability of 
each spin configuration, and is not particularly sloppy (first column) as one varies the strength of long-range bonds (lower left). But if we only care about 
long wavelengths — with data on a coarse-grained grid — the relevant and irrelevant directions separate, and the model becomes sloppy. Our analysis 
thus captures key predictions of the renormalization group: it discovers the emergent relevant parameter combinations.



Implications of 
Sloppiness

A variety of applications…



Are rate constants useful?
Fits vs. measurements

• Easy to Fit (14 expts); Measuring huge job (48 params, 25%) 
• One missing parameter measurement = No predictivity 
• Sloppy Directions = Enormous Fluctuations in Parameters 
• Sloppy Directions often do not impinge on predictivity

Fits good: 
measured 

bad

Monte Carlo (anharmonic)

Missing 
one 

param

Measured

Fit

eigen params

Best Fit

bare 
params

 "Universally Sloppy Parameter Sensitivities in Systems Biology", Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R. 
Myers, James P. Sethna, PLoS Comput Biol 3(10) e189 (2007). (PLoS, doi:10.1371/journal.pcbi.0030189),
https://sethna.lassp.cornell.edu/pubPDF/SloppyEverywhere.pdf



Text Fruit fly embryo development model 
robust: 1/200 parameter sets in 

“allowed region” [± 3000%] fits data. 
(Naïve green cube: L48 = 1/200)

Parameter robustness and  sloppiness 
Do parameters matter at all? 

Bryan Daniels, Yanjiun Chen, Ryan Gutenkunst, Chris Myers

Segment polarity model 
is sloppy (eigenvalues, 
left) and robust (PCA, 

phenotype-preserving in 
cube, right).

Text Model is sloppy: only four parameter 
directions vary less than ± 3000%. 
(Red brick: allowed regions of three 
stiffest to give 1/200 acceptance). 

*  "Sloppiness, robustness, and evolvability in systems biology", Bryan C. Daniels, Yan-Jiun Chen, James P. Sethna, Ryan N. Gutenkunst, and Christopher R. 
Myers, Curr Opin Biotechnol 19, 389-395 (2008), doi:10.1016/j.copbio.2008.06.008, https://sethna.lassp.cornell.edu/pubPDF/SloppyRobust.pdf



Environmental robustness and  sloppiness 
Circadian Rhythms 

Bacteria know the time 
of day! How do they 
keep their clocks on time 
in the cold? All reaction 
rates exponentially 
dependent on 
temperature! Delicate 
cancellation?

Sloppiness facilitates 
finding parameter values 
for robust response to 
environmental change. 

Three sloppy directions, 18 rates exponentially dependent on temperature. Three stiff 
directions at each temperature? 18 – 3 (25°C) – 3 (30°C) – 3 (35°C) = 9 dimensional 
robust parameter space

*  "Sloppiness, robustness, and evolvability in systems biology", Bryan C. Daniels, Yan-Jiun Chen, James P. Sethna, Ryan N. Gutenkunst, and Christopher R. 
Myers, Curr Opin Biotechnol 19, 389-395 (2008), doi:10.1016/j.copbio.2008.06.008, https://sethna.lassp.cornell.edu/pubPDF/SloppyRobust.pdf



Evolvability, robustness, and sloppiness
If it’s robust, can it evolve? 

How can evolution proceed if 
mutating the parameters 
doesn’t matter? More robust, 
less evolvable!

Evolutionary force F

Sloppy signal transduction 
model 
Individual evolvabilities ec(F) 
within phenotype
Population evolvability ed within 
phenotype
[Sloppy neutral spaces allow 
species to explore large ranges 
of parameters]

Read up on this!



E. Bayesian Errors for Atoms
‘Sloppy Model’ Approach to Error Estimation of Interatomic Potentials

Søren Frederiksen, Karsten W. Jacobsen, Kevin Brown, JPS

Atomistic potential 
820,000 Mo atoms 
(Jacobsen, Schiøtz)

Quantum 
Electronic 

Structure (Si) 
90 atoms (Mo) 

(Arias)

Interatomic Potentials V(r1,r2,…)
• Fast to compute 
• Limit me/M → 0 justified 
• Guess functional form 
  Pair potential ∑ V(ri-rj) poor 
  Bond angle dependence 
  Coordination dependence 
• Fit to experiment (old) 
• Fit to forces from electronic 
   structure calculations (new)

17 Parameter Fit

"Bayesian Error Estimation in Density Functional Theory", J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Norskov, James P. Sethna, K. W. Jacobsen,
Phys. Rev. Letters 95, 216401 (2005), https://sethna.lassp.cornell.edu/pubPDF/SloppyMo.pdf.



E. Interatomic Potential Error Bars

Best fit is sloppy: 
ensemble of fits 
that aren’t much 

worse than best fit.  
Ensemble in 
Model Space! 

T0 set by 
equipartition 

energy = best cost

Error Bars 
from quality of 

best fit 

Ensemble of Acceptable Fits to Data
  Not transferable 
  Unknown errors 
• 3% elastic constant 
• 10% forces 
• 100% fcc-bcc, 
dislocation core

Green = DFT, Red = Fits

T0



Sloppy Molybdenum: Does it Work?
Estimating Systematic Errors

Bayesian error σi gives total error if ratio r = errori/σi distributed 
as a Gaussian:  cumulative distribution P(r)=Erf(r/√2)

Three potentials 
• Force errors 
• Elastic moduli 
• Surfaces 
• Structural 
• Dislocation core 
• 7% < σi < 200% 

Note: tails… 
Worst errors 
underestimated 
by ~ factor of 2

“Sloppy model” 
systematic 

error most of 
total 

~2 << 200%/7%

"Bayesian Error Estimation in Density Functional Theory", J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Norskov, James P. Sethna, K. W. Jacobsen, 
Phys. Rev. Letters 95, 216401 (2005), https://sethna.lassp.cornell.edu/pubPDF/SloppyMo.pdf.



Systematic Error Estimates for DFT
GGA-DFT as Multiparameter Fit? 

J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen,  
J. K. Nørskov, JPS, K. W. Jacobsen,  

(Anja Tuftelund, Vivien Petzold, Thomas Bligaard)

Enhancement factor Fx(s) 
in the exchange energy Ex

Large fluctuations

Actual error / predicted error
Deviation from experiment 

well described by ensemble!

 "Bayesian Error Estimation in Density Functional Theory", J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Norskov, James P. Sethna, K. W. Jacobsen, 
Phys. Rev. Letters 95, 216401 (2005),
https://sethna.lassp.cornell.edu/pubPDF/SloppyDFT.pdf


