Sloppy Models: Parameters are hard to
find, but predictions are possible.

Implications for science




Systems Biology: Cell
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Remember our systems biology model from the first lecture?
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48 Parameter Fit!




Numbers and notation

48 parameters 0, (kecr, Kmecr...): @ € R*
29 nonlinear differential equations
63 data points d;

63 predictions y,(®): behaviory € R63

Several experimental control variables
time ¢ since stimulation by by EGF, NGF,
strength of stimulation u,
drug interventions v like [LY] [red s],

soy; = Ye(t;, u;, v;) for experiment .

Predictions of collective behavior
(I's not sloppy if one does separate experiments
for each parameter. Also, such experiments are
usually useless to predict collective behavior.)

Let’s set up some notation. We have parameters in a 48 dimensional real vector space, and behaviors in a 63 dimensional space of experiments. We view y
as a map from parameter space to behavior space.

There are two other crucial ingredients. Our experiments have control variables, so the vector y_i should be viewed as y(t_i, u_i, v_i) for conditions t, u, and
v. And our experiments and predictions should be of collective behavior — no fair measuring each parameter independently! (Also



Ensemble of Models

We want to consider not just minimum cost fits, but all
parameter sets consistent with the available data. New
level of abstraction: statistical mechanics in model space.

__ Cost is least-squares fit
Don’t trust predictions that vary

o3 =(0°@))-(0®))

O 1s chemical concentration
y(t,), or rate constant O, ...

We do a Monte Carlo sampling of the Bayesian likelihood of different parameter sets, given the experimental data. We calculate error bars from our
predictions y(theta) from the error bars sigma_i of the experimental data, by weighting the model predictions by exp(-C(theta)). We do a Monte-Carlo
sampling of this nonlinear sum of squares.
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And we find that we can indeed make quite useful predictions.



48 Parameter F|t to Data

Kevin Brown, Josh Waterfall
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Predictions are possible

The behavior is ill-
conditioned: it depends only
on a few stiff parameter
combinations.
Eigenvalues of cost Hessian

0,C(0O)

% Stiff direction 9

, . g,m/ = ,u v
Sloppy direction  10-3 span enormous range

A
=
w

We do a Monte Carlo sampling of the Bayesian likelihood of different parameter sets, given the experimental data.
We cannot find 48 parameters from 63 data points. At upper left, the parameters are ordered according to their fractional uncertainty: note that the best
known parameter has a 5000% error, and note the log scale.
We can make predictions. At right we show a prediction of the model, with errors ~20% given from the same ensemble. What’s amazing is not that our
predictions fit new experiments — it is that we can make predictions at all, given the enormous uncertainty in the parameters!
At lower left is our basic explanation, illustrated by a contour plot of the ‘cost’ C (squared error, aka chi squared). The axes are chosen along two of the 48
eigenvalues of the cost Hessian g _mn (which will become the metric tensor later). Vertical is a stiff direction — small changes cross many contours;
horizontal is a sloppy direction, for which large changes in that combination of parameters hardly matter. A few of the eigenvalues for our model are stiff;
the other forty-some are sloppy. Later we shall use this to find emergent descriptions with fewer parameters.
Two more things.

(1) The original ‘bare’ parameters are tilted with respect to the eigenvectors — each of which varies a lot as we traverse the sloppy direction.

(2) The vertical and horizontal scales differ by a factor of 1000. The real figure stretches about a kilometer to the right.



Parameter Indeterminacy and
Sloppiness

Cost Contours Note: Horizontal scale
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So, the predictions as a function of parameters near the best fit form a really thin multidimensional hyper-ellipsoid. (This isn’t actually true — many of the
sloppy directions of the Hessian are associated with directions in which the parameter combination could reach out to infinity! More on this later.) Only a
few parameter combinations control the behavior.



Predictions are Possible

How can we make predictions when all parameters are undetermined?
— Almost all the parameters matter — shifting them by a factor of two
ruins the fit. This is the range one can shift parameters without allowing
others to vary: it is given by the diagonal elements of the cost Hessian,
(Gg)ﬁxed = 1/%aa'

— All parameters are badly determined. The range that parameters can
vary allowing others to compensate is given by the diagonal elements of

the inverse Hessian: (62) oftective = (Z ) yar

Linear algebra tells us that one standard deviation of behavior depends on whether the other parameters are known and fixed, or whether they can adjust
to compensate.

Since our ellipsoids are extremely thin, and no parameters are parallel to the stiff axes, all our parameters are poorly determined.
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But a few of the parameter combinations are well determined (lower left), because we choose them to move along the thin, stiff axes of the Hessian
contours.



Systems Biology

Ryan Gutenkunst, Chris Myers

Seventeen models

a) eukaryotic cell cycle

b) Xenopus egg cell cycle

C) eukaryotic mitosis

d) generic circadian rhythm

e) nicotinic acetylcholine intra-receptor
dynamics

f) generic kinase cascade

g) Xenopus Wnt signaling
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Ryan Gutenkunst, working with Chris Myers, wrote a wonderful Python software environment to interpret SBML files. (That’s ‘Systems Biology Markup
Language’, which was all the rage for a short time.) All kinds of biological systems turned out to be sloppy. We wrote some papers saying that biological
‘robustness’ (which then was a big exciting topic) was usually really sloppiness.

* "Universally Sloppy Parameter Sensitivities in Systems Biology", Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R.
Myers, James P. Sethna, PLoS Comput Biol 3(10) €189 (2007). (PLoS, do0i:10.1371/journal.pcbi.0030189), https://sethna.lassp.cornell.edu/pubPDF/
SloppyEverywhere.pdf

* "Sloppiness, robustness, and evolvability in systems biology", Bryan C. Daniels, Yan-Jiun Chen, James P. Sethna, Ryan N. Gutenkunst, and Christopher R.

Myers, Curr Opin Biotechnol 19, 389-395 (2008), doi:10.1016/j.copbio.2008.06.008, https://sethna.lassp.cornell.edu/pubPDF/SloppyRobust.pdf

We'll talk more about that later.



Sloppy Universality
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Enormous range of eigenvalues of H.3; Roughly equal density in log;

Observed in broad range of systems.
How can we use this to develop emergent laws?

Many ask whether this is a biology-specific phenomenon — maybe we evolve to be sloppy? (Robustness was justified by those ideas.) Not so!

Sums of exponentials, qguantum wavefunctions used in high-precision chemistry, our model for the cosmic microwave background radiation, and particle
accelerators are all sloppy. (Particle accelerators have hundreds of tunable magnets, so they have more eigenvalues — but the same enormous range). We
also see that physics models are sloppy (diffusion and Ising), here for reasons we understand. Only a few emergent parameters explain the behavior of
systems at long length and time scales.



Hessian for ﬁerfect data is given
by the Jacobian

A good fit has y-d small.
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Now, the Hessian for a 48 parameter model is a mess. But for a least-squares model that does a good job of fitting the data, the second derivative Hessian
can be approximately written in terms of the first derivative J of the predictions! This Jacobian is the amount y twists and stretches parameter space into
behavior space, and will be a focus of our attention. Also, if we want to measure the distances between nearby points on the model manifold, the
approximate Hessian is exact, and JAT J becomes the metric on the model manifold.



Fisher Information is the Metric
for probabilistic models

Fisher Information Matrix (FIM) measures distance

d(©,0 + A) ~ gosAals

d%log P(x)
g"‘ﬂ(@)__< 00,00, >x

Natural distance (metric tensor) between nearby probability
distributions, parameterized by 6 (see exercise Hellinger)

For least-squares models (Gaussian P(y(®) — d), FIM
distance equals |y(®,) — y(0,)|/c

Cramér—Rao bound: uncertainties in ® bounded below by
inverse of Fisher Information matrix

Machta (not me): Entropy cost for thermodynamic control is
FIM path distance

What is the metric for more general, probabilistic models, like an N-spin Ising model (which predicts the probability of 2AN spin snapshots), or the
Lambda-CDM model for the Big Bang (which predicts the probability of seeing a particular fluctuating temperature map of the microwave background
radiation for our particular Universe)? In Exercise Hellinger, we’ll motivate this Fisher Information Metric, which we’ll use next to study the Ising model and
the sloppy renormalization group.



FIM for Stat Mech

Deep links In local distances

Info Geom: FIM = g,4(®) = — (d,0;log p) measures local dist

Stat Mech: log p = % . Second derivatives of # are physical!
particle density p = N/V
isothermal compressibility k = — (1/V)(0V/0P) | .

thermal expansion coefficient a = (1/V)(0V/0T') | »
Specific heat at constant press c, = (T/N)(0S/0T) | »

FIM = g,(0) = N(

—x/pT —alpT
—alpT cp/T?

See exercise S2.3-5 (or text 6.20-22).

The natural metric in least-squares fits is the distance between the predicted data points and the measured ones, as measured in units of the error bars. In
more general problems, the predictions are probability distributions P(x), and the natural metric is the Fisher information metric. This metric measures
distances on the manifold of model predictions (to be discussed next).



Physics: Sloppiness and Emergence
Ben Machta, Ricky Chachra, Mark Transtrum

Configurations

Ising: long bonds
Diffusion: long hops

Details irrelevant on
macroscale

Eigenvalues
3

_L
<

Emergence when
only a few things
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—
—

2 3 4
Coarsening Steps

We studied Ising models using our sloppy model eigenvalues (here for the Fisher Information Matrix as g.»). The Ising model predicts the probability of

each spin configuration, and is not particularly sloppy (first column) as one varies the strength of long-range bonds (lower left). But if we only care about
long wavelengths — with data on a coarse-grained grid — the relevant and irrelevant directions separate, and the model becomes sloppy. Our analysis
thus captures key predictions of the renormalization group: it discovers the emergent relevant parameter combinations.



Implications of

Sloppiness

A variety of applications...



Are rate constants useful?
Fits vs. measurements

Missing
one

Time (min)

Monte Carlo (anharmonic)

» Easy to Fit (14 expts); Measuring huge job (48 params, 25%)
» One missing parameter measurement = No predictivity
 Sloppy Directions = Enormous Fluctuations in Parameters

* Sloppy Directions often do not impinge on predictivity

"Universally Sloppy Parameter Sensitivities in Systems Biology", Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R.
Myers, James P. Sethna, PLoS Comput Biol 3(10) €189 (2007). (PLoS, do0i:10.1371/journal.pcbi.0030189),
https://sethna.lassp.cornell.edu/pubPDF/SloppyEverywhere.pdf



Parameter robustness and sloppiness

Do parameters matter at all?

Bryan Daniels, Yanjiun Chen, Ryan Gutenkunst, Chris Myers

Fruit fly embryo ‘development model
robust 1/20 parameter sets in_

|.
|

Model is sloppy: only fo rparameter
directions vary less than = 3000%
(Red brick: alrawed regi ns of three
stiffest to give 1/200 ac;peptance)

* "Sloppiness, robustness, and evolvability in systems biology", Bryan C. Daniels, Yan-Jiun Chen, James P. Sethna, Ryan N. Gutenkunst, and Christopher R.
Myers, Curr Opin Biotechnol 19, 389-395 (2008), doi:10.1016/j.copbio.2008.06.008, https://sethna.lassp.cornell.edu/pubPDF/SloppyRobust.pdf




Environmental robustness and sloppiness
Circadian Rhythms

Active Inactive

Sloppiness facilitates
finding parameter values
for robust response to
environmental change.

* "Sloppiness, robustness, and evolvability in systems biology", Bryan C. Daniels, Yan-Jiun Chen, James P. Sethna, Ryan N. Gutenkunst, and Christopher R.
Myers, Curr Opin Biotechnol 19, 389-395 (2008), doi:10.1016/j.copbio.2008.06.008, https://sethna.lassp.cornell.edu/pubPDF/SloppyRobust.pdf




Read up on this!

Evolvability; robustness; and'sloppiness

If it’s robust, can it evolve?

Parameter Space

Evolutionary force F

Behavior Space
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E. Bayesian Errors for Atoms

‘Sloppy Model’ Approach to Error Estimation of Interatomic Potentials
Soren Frederiksen, Karsten W. Jacobsen, Kevin Brown, JPS

Interatomic Potentials V(r,r,,...)

* Fast to compute
e Limit m /M — O justified
» Guess functional form
Pair potential Y V(r-r;) poor
Bond angle dependence
Quantum  « Coordination dependence
Electronic : « Fit to experiment (old)
Structure (Si) “: « Fit to forces from electronic

90 atoms (Mo) structure calculations (new)
(Arias)

Atomistic potenfial

820,000 Mo atoms .
(Jacobsen, Schigtz) 17 Parameter Fit

"Bayesian Error Estimation in Density Functional Theory", J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Norskov, James P. Sethna, K. W. Jacobsen,
Phys. Rev. Letters 95, 216401 (2005), https://sethna.lassp.cornell.edu/pubPDF/SloppyMo.pdf.



E. Interatomic’ Potential Errer Bars

Ensemble of Acceptable Fits to Data
Not transferable
Unknown errors
* 3% elastic constant
* 10% forces
* 100% fcc-bec,
dislocation core

Sloppy
Model

Ensemble

Probability p(AE)

Error Bars
from quality of
s 4 - best fit
Green = DFT, Red = Fits




Sleppy: Velynaenum: Deesit VWenk?

Estimating Systematic Errors
Bayesian error o, gives total error if ratio » = error /o, distributed

as a Gaussian: cumulative distribution P(r)=Erf{r/N2)

Three potentials
* Force errors
e Elastic moduli

» Surfaces
Worst errors
 Structural

- Dislocation core =2 4 underestimated
« 7% < 0. < 200% - /F by ~ factor of 2
I ' : —— Erf(i/sqrt(2))

.
-

“_.~""Note: tails....

“Sloppy model”
systematic J L

error most of ol —— Observables

total ¥

~2 << 200%/7%

"Bayesian Error Estimation in Density Functional Theory", J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Norskov, James P. Sethna, K. W. Jacobsen,
Phys. Rev. Letters 95, 216401 (2005), https://sethna.lassp.cornell.edu/pubPDF/SloppyMo.pdf.



Systematic Error Estimates for DFT

GGA-DFT as Multiparameter Fit?

J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen,
J. K. Narskov, JPS, K. W. Jacobsen,
(Anja Tuftelund, Vivien Petzold, Thomas Bligaard)
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Enhancement factor F,(s) Actual error / predicted error
in the exchange energy E_

"Bayesian Error Estimation in Density Functional Theory", J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Norskov, James P. Sethna, K. W. Jacobsen,
Phys. Rev. Letters 95, 216401 (2005),
https://sethna.lassp.cornell.edu/pubPDF/SloppyDFT.pdf




