
Model Manifolds: Hyperribbons and 
emergent simplicity

Today we move out of parameter space, to study the curved surface in behavior space that contains all the predictions of our model.



Fitting Decaying Exponentials
Classic ill-posed 
inverse problem 

Given Geiger counter 
measurements from a 

radioactive pile, can we 
recover the identity of 
the elements and/or 

predict future 
radioactivity?  Good fits 
with bad decay rates!

6 Parameter Fit
y(A,γ,t) = A1 e-γ1t+A2 e-γ2t+A3 e-γ3t

Ensemble: 
Extrapolation

Ensemble: 
Interpolation

Fit
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Fitting Decaying Exponentials

We’ll illustrate our model manifold with one of the classic ill-posed problems: extracting the parameters from a sum of three exponentials. 



The Model Manifold: Predictions

Parameter space 
Stiff and sloppy directions

Two exponentials θ1,θ2 
yn = exp(-θ1 tn) + exp(-θ2 tn) 

fit to three data points at t1,t2,t3

θ1

θ2

Mark Transtrum 
Ben Machta

Behavior space 
Manifold of model predictions 
Parameters as coordinates 

Model boundaries   
are simpler models 

Metric gµν from distance to data 
Experimental datum slices manifold

θν = 0,∞, θμ

Prediction

0
0 15

15

Best Fit  
Parameters

It’s useful to look at this ‘model manifold’ for a two parameter model, in a three-dimensional behavior space. Consider a model with two decay rates, 
evaluated at three times. 
At left we have parameter space: the Hessian at the best fit has a stiff and sloppy direction. 
At right we have the model manifold — the set of predictions forms a 2D manifold in the space (y1,y2,y3), with coordinates 𝜃1 and 𝜃2. 
Later on, we shall be interested in 
(1) the edges of the model manifold — simpler models with fewer parameters,
(2) the metric on the model manifold, which is given by the distance in data space (and equals the cost Hessian for a perfect model)
(3) slices of the model manifold given by fitting a data point, say d2 measured at t2. This is given by cutting along the plane y2=d2.



Hessian for perfect data is metric 
in behavior space

|y(θ′ ) − y(θ) |2 = δαδβgαβ
Metric Tensor defined from 
distance in behavior space

gαβ = (JTJ)αβ

∑
i

(yi(θ′ ) − yi(θ))2 = ∑
i (∑

α

δα
∂yi

∂δα )
2

= ∑
i (∑

α

δα
∂yi

∂δα ) ∑
β

δβ
∂yi

∂δβ

= ∑
αβ

δαδβJT
αiJiβ

For NLLS models

Giving us the approximate 
cost Hessian: sloppy if J is 

skewed

The metric tensor on the model manifold is the approximate Hessian we’ve seen before. The Jacobian is important: it maps perturbations in parameter 
space into behavior space. The skewness of this mapping gives the large range of eigenvalues of the cost Hessian (and metric tensor), and in the end will 
give us the hyperribbon structure of the model manifold.



Geodesics
“Straight line” in curved 

space 
Shortest path between 

points 

Easy to find cost 
minimum using polar 
geodesic coordinates 

γ1, γ2
Cost contours in geodesic coordinates 

nearly concentric circles!  
Use this for algorithms…

γ1

γ 2
 

 

How will we measure and characterize our model manifolds? An important tool is the geodesic — the analogue of straight lines when you live on a curved 
surface. The geodesic between two points is a shortest path. On the torus, we see a geodesic which isn’t globally the shortest, but locally is.

Given the metric tensor, how do we find the equations to solve for the geodesics?



Geodesics 
Minimum length paths on the model manifold

L = ∫
b

a
dt Σi ( dyi

dt )
2

= ∫
b

a
dt Σi ( ∂yi

∂θα

·θα) ( ∂yi

∂θβ

·θβ)
= ∫

b

a
dt ΣiJiαJiβ

·θα
·θβ = ∫

b

a
dt gαβ

·θα
·θβ

Label path by arbitrary coordinate t: y(t)

Can’t use calculus of variations! Path length invariant for any 
parameterization s(t): run a while, then dawdle, …

These notes were written up by Katherine Quinn last time I taught the course. The geodesic equations won’t be used in these lectures, and so I include the 
derivation as an optional sideline. They are less straightforward to derive than one might guess, and are one of the significant results of differential geometry.

This slide writes down the length, but there are an infinite family of minimal paths once you allow the parameters to vary in speed: change coordinates to s(t) and 
get a new function.



Geodesic equation  
At the minimum, the (functional) derivative is 0

Cauchy Schwartz inequality: . 
Let  , , and .  

Then  and . So 

(U ⋅ V)2 ≤ (U ⋅ U)(V ⋅ V)

U(t) = gαβ
·θα

·θβ V(t) ≡ 1 U ⋅ V = ∫ dtU(t)V(t)

V ⋅ V = (b − a) U ⋅ V = ∫ dtU(t) × 1 = L

L2 = (U ⋅ V)2 ≤ (U ⋅ U)(b − a) = (b − a)∫
b

a
dtgαβ

·θα
·θβ

Minimizing  gives the minimum path ,  

traversed at a constant speed.* Now we can use calculus of 
variations.

E[Θ(t)] = ∫
b

a
dtgαβ

·θα
·θβ Θ(t)

The inequality is an equality if  and  are parallel. 
Since , this means the speed, , is constant.

U V
V ≡ 1 U

Instead, we use the Cauchy-Schwartz inequality to both get rid of the nasty square root and to force the minimum to have constant velocity in behavior space.



Geodesic trick  
Calculus of variations

Integrate 
last two by 
parts, factor 
out (t), set 
rest to zero

δ

E[Θ] = ∫
b

a
dtgαβ

·θα ·θβ

0 = ΔE = E[Θ + Δ] − E[Θ] = E[Θ + Δ] − E[Θ]

= ∫
b

a
dt δγ∂γgαβ

·θα ·θβ + gαβ
·θα ·δβ + gαβ

·δα ·θβ + O(δ2)

= …
gγβ

··θβ = − 1/2 (∂αgγβ + ∂βgαγ − ∂γgαβ) ·θα ·θβ = − Γγαβ
·θα ·θβ

··θμ = − gμγΓγαβ
·θα ·θβ = − Γμ

αβ
·θα ·θβ

Add small 
perturbation 
to the path

Giving us the geodesic equation in terms of 
the Christoffel symbols  Γμ

αβ

This introduces the rather complicated formula for the Christoffel symbol in terms of derivatives of the metric tensor, which makes for a nice geodesic equation.

The Christoffel symbols are needed whenever one is comparing things at different points on the model manifold. 

Note that all my thetas should have upper indices here, and 



The Model Manifold is a 
Hyperribbon

•Hyperribbon: object that is longer than  
  wide, wider than thick, thicker than ... 
•Thick directions traversed by stiff 
  eigenparameters, thin as sloppy 
  directions varied. 

Hyperribbon 
cross-section for 
sums of several 

exponentialsWidths along geodesics track 
eigenvalues almost perfectly!

Mark Transtrum, Ben Machta
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When we have many parameters fit to many data points, the model manifold becomes a hyperribbon. A hyperribbon is like a hypersphere or a hypercube, 
but longer than wide and wider than thick, … The long direction corresponds to the stiffest eigenvalue. If we start at the best fit, and measure the widths 
of the manifold using geodesics pointed along the eigendirections of the cost Hessian, we find that the widths nicely track the square roots of the 
eigenvalues. So the hierarchy of sloppiness in parameter space can be explained if we understand why the model forms a hyperribbon in behavior space.



Stock prices form a hyperribbon
Lorien X. Hayden, Ricky Chachra, Alexander A. Alemi, Paul H. 

Ginsparg, Alen Senanian, Noé Beserman
  

Nine 'stiff' directions distinguishable from noise.
Sectors of the economy are vertices. Why low dimensional?

Why does PCA work?
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Marc Potters and JP Bouchaud, ages ago, wrote a paper noting that the main principal components of stock market prices had strong overlaps with the 
sectors of the economy. Inspired by this work, we found that a better description is given by a hyper-tetrahedron, allowing companies to be divided into 
percentages of, say tech and non-cyclical sectors (IBM). My emphasis here is that in a 50000 dimensional space of price trajectories, a nine-dimensional 
hyperribbon describes most of the explainable variation, allowing a useful emergent description into sectors.



Renormalization group 
and the model manifold

Archishman Raju, Ben Machta

RG usually coarse-
graining in parameter 
space: 
Relevant t, h grow,  
irrelevant shrink
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RG as Lie derivative of  
metric on model manifold:  
Relevant distances  
stay fixed; irrelevant shrink 

What would the renormalization-group flow do to the model manifold?
* The Ising model manifold is known to have a cusp at the critical point, given by the curvature of g𝜇𝜈.
* The intensive embedding for the Ising model can be derived, conveniently, from the free energy.
* The RG acts as a flow on the model manifold. 
* Irrelevant perturbations shrink in behavior space, as they do in parameter space.
* Relevant distances stay the same under coarse graining, unlike they do in parameter space.
* Under coarse-graining, new interactions are formed in the RG. These could become subsumed into finding the coordinates on the model manifold after 

coarse-graining.
It would be fascinating to visualize this flow using the techniques of Lecture 6.



Hyperribbon widths from geodesics

We’ve seen this figure before. The hierarchy of widths we see here is why we call the model manifold a hyperribbon. It should remind you of the hierarchy 
of metric eigenvalues. In most models with sensible definitions of the parameters, the square roots of the eigenvalues roughly correspond to the widths of 
the model manifold.



Hyperribbons = Emergent 
Simplicity

I’m going to speculate wildly here.  
* Occam’s razor: MBAM will derive a series of simpler 

models using the hyperribbon structure, allowing coarse-
grained simpler models. 

* How science can work: Explain the big picture, let others 
prove that more and more details are important. 

* Wisdom: If only a few degrees of freedom matter, 
experience will guide you into what changes will help.  

* Superstition: Often your intuition is fleshed out into a story, 
which may have predictive power without having any 
microscopic basis.



Curvatures
Intrinsic curvature Rµ

ναβ

• determines geodesic  
   shortest paths 
• independent of embedding,  
   parameters 
Extrinsic curvature 
• also measures bending in 
   embedding space  
   (i.e., cylinder) 
• independent of parameters 
• Shape operator, geodesic 
curvature 
Parameter effects 
“curvature” 
• Usually much the largest 
• Defined in analogy to 
extrinsic curvature (projecting 
out of surface, rather than into)

Shape 
Operator

Geodesic 
Curvature

No intrinsic  
curvature



Hierarchy of 
widths and 
curvatures

Eigendirection at best fit

Multi-decade span of 
widths, curvatures, 

eigenvalues 

Widths ~ √λ sloppy eigs 

Parameter curvature  
KP = 103 ✕ K  

>> extrinsic curvature 

107
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Hierarchy of widths

Cross sections: fixing f at 0, ½, 1
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Why a hyperribbon? 
Physical argument  
and rigorous proof 

Katherine Quinn, Friday!

I may have convinced you that models have behaviors that form hyperribbons, and the hyperribbons explain the sloppy behavior of parameters. Now I need to explain why this 
occurs.



Why a hyperribbon?

Hyperribbon follows from model analyticity in experimental controls 
(time, temperature, pressure, …)

Each data point slices model 
manifold; interpolation theory 
bounds remaining variation

Mark Transtrum, Ben Machta

• Interpolation theory: model 
predictions fit to data bounded by 

𝚫�Ym  y(m)(⇠)

m!
(t� t1) . . . (t� tm)

⇡ (�t/R)m
<latexit sha1_base64="5VvsdBZe181hzK1wTtUOzmU3cXU="></latexit>

• Each slice reduces manifold 
thickness by 𝚫t/R: hierarchy of 
widths

Hyperribbon: Cross section 
constrained by m data points 
has width 𝚫Ym ~ (𝚫t/R)m

Three steps to understand the basic argument that multiparameter models have hyperribbons (due to Transtrum).
(1) Each experiment is a dimension of the model manifold. Adding a data point (say at t2), slices the model manifold along the plane y(t2) = d2. Slicing a 
hyperribbon cuts off the longest direction. Can we show adding a data point makes the remaining range of predictions shrink?
(2) Interpolation theory tells us that a model fit to m data points, that everywhere has a mth derivative bounded by m! R-m, will have interpolated values that 
differ no more than 𝝙Ym = R-m times a polynomial that vanishes at all of the fitted points.
(3) Thus adding another data point reduces the variations of all the other points, by an amount given by the range 𝝙t/R.

Thus the widths of the model manifold decrease by a geometrical factor every time it is sliced — making it a hyperribbon.



Sloppy Polynomials
Rigorous proof of hyperribbon bounds

Fitting Monomials to Data 
 

Functional Forms Same 
Hessian  

Famous Hilbert matrix

yΘ(x) = ΣN−1
α=0θαxα

ℋαβ = 1/(α + β + 1)

Orthogonal Polynomials 
 

 Functional Forms Distinct 
Eigen Parameters 

Hessian 

yb(x) = ΣαbαLn(x)

ℋαβ = δαβ

Volume change 
|H| = ∏ λndet(J) = det ℋ = ΠN

α=1 λα

Sloppiness arises when 
parameter directions 
skew under map

Sloppiness also arises in linear fits. In exercise “Sloppy monomials”, you will see that the mapping between polynomial coefficients and the resulting behavior is sloppy. But the 
model manifold for a linear fit is a plane — as the monomial coefficients go to infinity, the behavior keeps changing.



Exercise ‘Monomial Hyperribbons’ 
Jacobian  is Vandermonde matrix;  

Hamiltonian  is Hilbert matrix.  
Tiny eigenvalues = Skew mapping, takes sphere  into 

hyper-ellipsoid 

Jtα
ℋαβ

Σθ2
α < R2

Range �Ym  y(m)(⇠)

m!
(t� t1) . . . (t� tm)

⇡ (�t/R)m
<latexit sha1_base64="5VvsdBZe181hzK1wTtUOzmU3cXU="></latexit>

Poly Range 

Polynomials have biggest range of 
predictions given Taylor series bounds

Model manifold for polynomials with bounded 
gradients ? Easier: spherical bound on 

coefficients 
y(m)(t)

θm = y(m)(0)/m!

It turns out that this sloppiness is the key to our rigorous proof that nonlinear models are sloppy, and to understanding under what conditions we know that it will be so. This will 
be discussed in the exercise “Monomial hyperribbons”. 



Vandermond Matrix is Sloppy

Taylor series R=1, approx function in range T = 0.9Δ

Katherine Quinn, Heather Wilbur, Alex Townsend
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det(V ) =
Y

0ij<N

(ti � tj) ⇠ (�T )N(N�1)/2 =
NY

n=1

[�n ⇠ (�T )n]
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det(V ) =
Y

0ij<N

(ti � tj) ⇠ (�T )N(N�1)/2 =
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n=1

[�n ⇠ (�T )n]
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det(V ) =
Y

0ij<N

(ti � tj) ⇠ (�T )N(N�1)/2 =
NY

n=1

[�n ⇠ (�T )n]

Hyperribbon 
from massive 
skewness in 

Jacobean

We can turn this into a rigorous proof by using the properties of the Vandermonde matrix. Consider a multiparameter function f(t), whose Taylor series has 
coefficients bounded by one (hence with a radius of convergence one). Suppose we fit f(t) to a function over a range 0.9. We can view the truncated Taylor 
expansion as a map of a hypercube of coefficients a into a space of function values f, whose expansion is given by a Vandermonde matrix. This matrix is 
famous for having a tiny determinant, and indeed can be proven to have eigenvalues roughly equally spaced in log — the image of the cube is an incredibly 
skewed parallelepiped. This, plus a small fuzz around it from the truncation, shows that the space of possible model predictions is a hyperribbon.



Rigorous hyperellipsoid bounds on 
model manifold

Katherine Quinn,  
Heather Wilber, Alex Townsend

We show its predictions will 
be confined to a  
hyperellipsoid: 
hierarchically 
flat and thin

Any prediction must be contained in a hyperellipsoid whose 
principle axis lengths are exponentially separated

Triangle = Model 
manifold, fitting 
exponentials 

Ellipsoid = Bound for 
any theory with R=1A model with radius of convergence 

R will asymptotically satisfy 
N�1X

k=0

✓
Rk

k!
y(k)

◆2

< CN
<latexit sha1_base64="DDsG93pg7q7uBvPqtDnoTCBpwFg="></latexit>

In collaboration with mathematicians, Katherine Quinn has shown that any model which has smooth derivatives in the experimental control variables (time, 
temperature, pressure, concentration) will have model manifolds that are enclosed in hyperellipsoids. The axes depend on the radius of convergence of the 
model and the experimental conditions being predicted. This theorem forces the model manifold (blue) to not only be a hyperribbon, but a flat 
hyperribbon.
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FIG. 1. Model manifold of three disparate models: (1) exponential decay, (2) reaction velocities of an enzyme-catalysed
reaction, and (3) the infected in an SIR model. The models are evaluated at 11 equally spaced points on [0, 1] (shifted and
scaled from [�1, 1]), and obey the smoothness condition in Eq. (9), with C = 1 and R = 2. (a) An illustration of each model,
where each line represents the respective model predictions with a di↵erent set of parameters. (b) Each point in the figure
displays the model prediction for a given parameter choice. The space of all possible predictions forms a geometric object
known as the model manifold (shown as the colored shape in the middle of each ellipse). The model manifolds are all bounded
by the same hyperellipsoid, and so the two axes represent the first and second longest hyperellipsoid axes. Note that, in all
three models, only values greater than 0 are physically significant. This constraint manifests itself geometrically through their
location in the hyperellipsoid, i.e.; they are all confined to the positive orthant. (c) The lengths of each model manifold along
the eleven axes of the hyperellipsoid HP in Eq. (11). Black points are the numerically computed lengths of HP , given by
2C

p
N�j(V D) in Eq. (11), and include the error term from Eq. (10) (note the kink at the second to last point), forming an

upper bound on possible lengths of the manifolds. The explicit decay rate of the Chebyshev-based bound (black dotted line)
is based on the fact that models obeying Eq. (9) are analytic in the ellipse E⇢(⇣). (Here, ⇢(⇣) ⇡ 3.81.) It captures the decay
rate of �j(V D) for j < 11, and closely follows the true decay rate in the successive widths of the various manifolds.

total degree N�1 approximates y✓:

pN�1(t, s; ✓) =
X

0j+kN�1

cjk(✓)Tjk(t, s). (12)

Let ⇢ > 1 and M > 0 be constants. For all fixed choices
of s = s

⇤, suppose that the 1D function of t, y✓(t, s⇤), is
analytic in t and bounded  M uniformly with respect to
both s and ✓, and that an analogous condition holds for
y✓(s, t⇤). A result similar to Theorem 1 can be proven
by adapting the ideas in [9, Ch. 8] to the 2D setting.
Specifically, we have that

(i) ky � pN�1k1  4MNC1⇢
�N+1

, (13)

(ii) |cjk(✓)|  4M⇢
�(j+k)

, (14)

where C1 = (2⇢� 1)/(1� ⇢)2.
As in the 1D case, we study the model mani-

fold P associated with pN�1 as an approximation to
Y, the manifold for y✓. We parameterize P us-
ing a vector of blocks, P (✓) = (B0, . . . , BN�1)T , where
Bj = (P0j , P1(j�1), . . . , Pj0) and Pjk = pN�1(tj , sk; ✓).
Since each block Bj has j+1 entries, P (✓) is of length

n = N(N+1)/2. Corresponding vectors of sample loca-
tions t and s are defined so that P (✓) = pN�1(t, s; ✓).
As before, we exploit the decay of the bounds in

Eq. (14) to show that P lies in the range of a matrix
with strongly decaying singular values. To see this, define
c̃ as an appropriately ordered n ⇥ 1 vector of the scaled
coe�cients c̃jk = ⇢

�(j+k)
cjk, and form the linear map

P (✓) = X c̃. Here, X = [XB0 | · · · |XBN�1 ], where XBj

is a block of j+1 columns scaled by ⇢
�j . Specifically,

XBj = ⇢
�j [T0(t)Tj(s) |T1(t)Tj�1(s) | · · · |Tj(t)T0(s)].

Since c̃ is constrained to lie in an n-sphere of radius
4M

p
n, the manifold P is contained in a hyperellipsoid

HP with cross-sectional widths characterized by the
singular values of X. One can show that the singular
values of X must decay at, at least, a subgeometric
rate. An argument similar to the one used in Theorem 2
shows that for 2  j  n,

�j(X) 
3
p
C2

2
n⇢

�
jp

8(j�1)+1/2�1/2
k

, (15)

where C2 = (1 + ⇢
�2 + ⇢

�4)/(1� ⇢
�2)3 and b · c repre-

sents the floor function. One can use HP and Eq. (13) to
explicitly construct a hyperellipsoid HY that must con-

Hyperellipsoid bounds on model 
manifold

Katherine Quinn, Heather Wilber, Alex Townsend
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Katherine Quinn, working with mathematicians Heather Wilber and Alex Townsend, proved that any model which has smooth derivatives in the 
experimental control variables (time, temperature, pressure, concentration) will have model manifolds that are enclosed in hyperellipsoids. The axes 
depend on the radius of convergence of the model and the experimental conditions being predicted. This theorem forces the model manifold (blue) to not 
only be a hyperribbon, but a flat hyperribbon. 
Here are three different models (physics, chemistry, and epidemiology), each evaluated at ten equally spaced times. All of them share the same 
hyperellipsoid bounds. At right you see the exponential decays of the successive widths of their model manifolds, showing that they are all hyperribbons. 
You see that the hyperellipsoid widths and our rigorous bounds also decay geometrically.


