
Hyperribbons and 
emergent models

Humans can comprehend low-dimensional systems. Once tens or hundreds of things are separately important at the same time, our intuition fails us. The 
fact that so many systems have comprehensible behavior is the foundation of science. Physics is founded on low-dimensional emergent laws that arise 
from small parameters — small frequencies and wavenumbers, temperatures low compared to bond strengths and ionization energies, … Science in other 
fields may be possible because they form hyperribbons.



Tradition: Start from 
experiment

Hyperribbons tell us a small number of measurements can  
characterize the system (span the long axes of the 
hyperribbon).  
Basis for human intuition, wisdom and experience  
Basis for superstition? Human pattern recognition? 
Basis for ‘spherical cow’ physics modeling.

• Vary a few parameters (composition, annealing, 
deformation, radiation) [span hyperribbon long axes] 

• Observe behavior, characterize with a few quantities 
(yield stress, fracture toughness, porosity) 

• Derive intuitive explanation for link of behavior with 
parameters, parameter history); fit.



Starting from complex 
microscopic model

If a complex model has only five 
stiff directions, why not a simpler 

model with fewer parameters?

If most of the 48 dimensions of parameter space are sloppy, why not develop simpler models with fewer parameters? 



Which Rate Constants are in the Stiffest Eigenvector?

Eigenvector 
components along 
the bare parameters 
reveal which ones 
are most important 
for a given 
eigenvector.
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We tried hard at the beginning. Our systems biology model was important biologically because two of the proteins (Ras and Raf) were products of known 
‘oncogenes’ — genes which were often found mutated in cancer tumors. Our stiffest direction in parameter space (in red) did seem to correlate with 
reactions near the oncogenes. But it wasn’t compelling: things looked pretty random.



Simplify: Just keep the stiff ones? 

Stiff eigendirections are 
weird, random-looking, 
& unintuitive. 

Stiff + sloppy = Stiff. 

No ‘perpendicular’ in 
parameter space.
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We understand why the stiff eigendirections are usually incomprehensible. Moving along a direction given by a sum of the stiffest plus a sum of sloppy 
directions would naturally give the same change in behavior — the stiffest is special only because it is ‘shortest’ in parameter space: it minimizes the sum 
of squares of percentage changes in our reaction constants. This criterion is not physically sensible. Indeed, the only natural metric in parameter space 
g_{mu,nu}, that given by the change in behavior. 



Removing redundant 
parameters?

Challenges in removing parameters. 
All parameters are important individually; only 
combinations might be removed. 
Even the stiff combinations are complicated. 
Experimentalists want to know what happens when we 
change each of the parameters.  

Common shortcuts 
Search using a few ‘most sensitive’ parameters, 
according to  
Assume shared values for similar parameters 
Take estimates for most from the literature, vary others 

ℋαα

These likely work because the models are sloppy.

If most of the 48 dimensions of parameter space are sloppy, why not develop simpler models with fewer parameters? 



Model boundaries! 
Transtrum’s MBAM 

algorithm for deducing 
emergent, simpler models.



The Model Manifold: Predictions
Two exponentials θ1,θ2 

yn = exp(-θ1 tn) + exp(-θ2 tn) 
fit to three data points at t1,t2,t3

Mark Transtrum 
Ben Machta

Behavior space 
Manifold of model predictions 
Parameters as coordinates 

Model boundaries   
are simpler models 

Metric gµν from distance to data 
Experimental datum slices manifold

θν = 0,∞, θμ

Prediction

Parameter space 
Stiff and sloppy directions
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Remember our model manifold for two exponentials. The edges and corners of the model manifold are simpler models, where there are fewer parameters. 
The corners have decay rates that are fixed to either zero or infinity (no free parameters), and the edges have one decay rate (the other zero, infinity, or 
equal to the first).



The Model Manifold
Three exponentials 

fit to three data points at t1,t2,t3

This is the model 
manifold for three 
exponentials, sampled at 
a number of values of 

 (Exercise 
S3.1). Here the manifold 
fills a volume in the 3D 
space. Our sampling is 
not uniform in this 
volume (Jeffreys’ prior), 
but is uniform in  
(as recommended by 
Jeffreys).

θ1, θ2, & θ3

log θ

In the exercise “Plotting the model manifold”, you will explore model manifolds for more exponentials. Here is a model manifold for the prediction space of 
the sum of three exponential decays, as it predicts the values at the same three times (t = 1/3, 1, 3).  Since the model manifold fills a volume, we’re filling 
it with random points. Shortly, we will discuss in depth different methods for doing this — the problem of priors.



The Model Manifold: Corners
Three exponentials 

fit to three data points at t1,t2,t3

The four corners of the 
model manifold are 
models with no free 
parameters (and thus 
zero-dimensional sets in 
behavior space.) Can 
you predict where the 
edges of the model 
manifold will be, from 
looking at the figure?

For three exponentials, there are four different predictions that are constant in time, with zero, one, two, or three of the decay rates equal to zero and the 
others infinite. These form the simplest models on the model manifold. You can see hints in the density of points about where the next-simplest models 
will lie. The lines where the density of points jumps are reminiscent of caustics, which could be places where the model manifold ‘creases’ as it is squashed 
into a 2D plot. Here they depict edges — cusps in the shape of the model manifold boundary.



The Model Manifold: Edges
Three exponentials 

fit to three data points at t1,t2,t3

The edges of the model 
manifold are models 
where there is only one 
exponential decay. Either 
two of the three decay 
rates are at the extremes 
(zero or infinity), or two 
or all three of the rates 
are the same. Can you 
tell which is which? Can 
you predict what the 
faces of the model 
manifold will look like?

These cusps correspond to curves along which only one decay rate describes the behavior. For a three-parameter model, there model boundary also has 
two-dimensional faces. For a 48 parameter model, there will be simpler models with 47, 46, … parameters, corresponding to hyper-edges — likely each 
with its cusp.



MBAM Generation of Reduced Models
Mark Transtrum (not me)  

Can we coarse-grain sloppy 
models? If most parameter 
directions are useless, why not 
remove some? 
Transtrum has systematic 
“Model Boundary 
Approximation Method”: 
(1) Geodesic along sloppiest 
direction to nearby point on 
manifold boundary 
(2) Eigendirection simplifies at 
model boundary to chemically 
reasonable simplified model 

Coarse-graining = 
boundaries of model 
manifold.

Sloppiest Eigendirection

Simplified at Boundary 
(Unsaturable reaction)

Mark Transtrum (I was not involved) developed what he calls the ‘Model Boundary Approximation Method’, which simplifies multiparameter models by 
geodesically following the sloppiest directions to the edge of the model manifold. At the edges, the sloppiest direction resolves into a coordinated 
divergence of a few model parameters. If these two constants were diverging forward and backward rates of one reaction, Mark would simplify the model 
by removing that rate and setting the products and reactants to local equilibrium.

His discovery emerged from his observation that the geodesics he used to measure the width of the model manifold went off to infinity, but he could tell 
when the edge of the model manifold was reached because one (or more) of the eigenvalues of the metric would become much smaller than the others. 
This indicated that he was on the ‘plateau’: flat in the direction to the edge.

The eigenvectors of the metric at the best fit were incomprehensible: random-looking sums of most of the parameters. But, upon moving toward the edge 
along the geodesic, the eigenvector became simple. Here two parameters are going off to infinity at the same rate. You can imagine they are the forward 
and backward rates of the same reaction: the model boundary has one fewer parameter, given by the ratio of the two rates that determines the rapidly 
equilibrated balance of reactants and products.

Let us examine Mark’s application to our systems biology model.



MBAM Generation of Reduced Models
Mark Transtrum (not me) 

48 params 
29 ODEs

Mark applied this method to our original systems biology model. Remember that it began as a bewildering network with 48 parameters and a sloppy 
spectrum (spanning 15 orders of magnitude in eigenvalue, or 7 orders of magnitude in ‘length’). 



MBAM Generation of Reduced Models
Mark Transtrum (not me) 

12 params 
6 ODEs

Effective ‘renormalized’ params

Reduced model fits all 
experimental data

After 36 parameters were removed by subsequent MBAM operations, we are left with a comprehensible network with one side loop and a negative feedback 
loop. The spectrum is no longer sloppy. Most important, MBAM preserves the dependence on all of the original parameters — writing the new effective 
‘coarse-grained’ parameters as explicit formulas of the original ones. 

We all value capturing the essential physics of a problem with the simplest possible model. Mark has applied this (among other things) to complex models 
used in drug design which the FDA wants to understand simply before they approve them, and models of the US electrical power system.



Priors for sloppy 
models 

Mattingly, Transtrum, Abbott, Machta (not me)

Bayesian analysis relies on priors — an informed judgement about the relative likelihood of different model parameter sets. Can we generate a prior that 
satisfies Occam’s razor — preferring the simpler models at the hyperedges and hypercorners of the model manifold? Can such a prior work be 
reparameterization invariant, and perform better than Jeffrey’s prior, proportional to the square-root of the determinant of the metric?



Jeffreys prior is evil
Experiment observing  gives information about parameters . Want 

. Our model tells us . But . Hence
x θ

p(θ |x) p(x |θ) p(A & B)/p(B) = p(A |B)
Bayes’ theorem: p(θ |x) = p(x |θ)p(θ)/p(x)

Here  is the prior - the information you have from previous 
experiments.  
But how do you start, without data? With an uninformative prior. 

Letting  is bad: if  is a rate then high rates are favored, 
while if  is a timescale then long times are favored.  
Jeffreys suggested using the volume in behavior space near  as 
the weight, .  

A typical Monte-Carlo move in our systems biology sloppy model changes 
 by many orders of magnitude, so ignores  almost completely.

p(θ)

p(θ) = 1 θ
θ

θ
pJ(θ) ∝ det gαβ

pJ(Θ) p(x |θ)

What is a prior? What is a good choice for an ‘uninformative’ prior if you don’t have previous data or information? Why is Jeffrey’s elegant choice doomed 
for our problems?



Occam’s razor and 
model boundaries

Our model 
boundaries are 
simpler 
models. Want 
priors that 
concentrate at 
the boundary. 
Incorporate 
errors , 
imprecise data.

σ

Entia non sunt multiplicanda praeter necessitatem 
Prefer the model that requires the fewest assumptions

Agrees with  as ρJ σ → 0

ρJ ρ*

ρ♯

We’ve found that the edges of the model manifold are simpler models. If the simpler model fits the data just as well, wouldn’t we rather use it? Occam in 
the 14th century is credited with this idea.

On the left are two standard priors, decorating the model manifold for a sum of two exponentials. On the right are their two new priors — the ‘slab and 
spike’ model that adds extra weight to the boundary points which are the best fit for noisy data, and one that optimizes the mutual information between 
the parameters and the data. Both have additional weight near the simpler models at the edges and corners.



Weirdness in high dimensions
Almost none of the 
Jeffrey’s weight is near 
the (hyper-sharp) corners 
of the hyperribbon. Even 
for a ball , the volume 
at a distance  from its 
boundary goes as 

. A low-
dimensional projection 
has all the weight of 
Jeffrey’s prior at the 
center - where the model 
is thickest. 

𝔹N

Δ

Δ(N−1)/2

 

Jeffrey’s prior not only doesn’t add extra weight near the edges. For multiparameter models, it has essentially no weight near the edges!

In high dimensions, there is no volume near the edges of the model manifold. Jeffrey’s prior is concentrated in regions where the ‘thin’ directions of the 
model manifold are unusually thick. Here we see that the ball in N dimensions suffers from invisible edges. This gets much worse for a hyperribbon 
manifold with many thin directions.



Transtrum’s  
slab-and-spike prior

: Monte-Carlo in behavior space , sampled with max 
probability  best fit would give  with noise . 

: Give all the probability to . Spikes at edges and corners.

pNML(x) x
p(x |Θmax, σ) x σ

p♯(Θ) Θmax(x)

Best fits of noisy data naturally concentrate at the edges

Jeffreys evil

26 exps

ρJ

ρJ

ρNML

ρ♯

Two exp

ρ♯

ρJ

The slab-and-spike prior starts by sampling points in behavior space, with a probability given by the distance to the best fit inside the manifold. Then 
every parameter Theta gets a prior weight given by the cloud of points for which it is the best fit!

See section 5.2 of 
Quinn, Katherine N, Abbott, Michael C, Transtrum, Mark K, Machta, Benjamin B, and Sethna, James P (2022, dec). Information geometry for multiparameter 
models: new perspectives on the origin of simplicity. Reports on Progress in Physics, 86(3), 035901.



Mutual-information prior
Maximizing reduction of parameter entropy after seeing data

Two exps

ρJ
ρ*

Jeffreys evil

26 expsρJ

ρJ

ρ*

Optimal but odd 
Concentrated on points

I(X; Θ) = S(Θ) − S(Θ |X )

= ∑
x

∫dθ p(x |θ) p(θ) log
p(x |θ)

p(x)
.

Maximize mutual information

Mattingly et al. explored the prior that maximizes the amount of information gleaned by further measurements, adding the effects of finite data. As often 
happens in this kind of optimization, the best prior is on a finite set of points. This confuses the use of Bayes’ theorem; one must redo the optimization to 
incorporate new information gleaned from further experiments.

On the other hand, evaluating the probability for the prior and finding the ‘best fit’ is now easy — just compute the probability at a discrete set of points.

H. H. Mattingly, M. K. Transtrum, M. C. Abbott and B. B. Machta, Maximizing the information learned from finite data selects a simple model, PNAS 115 
(2018) 1760–1765 [arXiv:1705.01166].



How optimal are they?
Using mutual information to evaluate priors

ρ*

ρ*D=2
ρJ

ρJ

ρ♯

Transtrum’s slab-and-spike model does amazingly well in high 
dimensions for our fitting-exponentials problem!

We can use the mutual information to measure the performance of different priors in comparison to the optimal prior of Mattingly et al. Transtrum’s prior 
appears to do an excellent job, while the other priors perform poorly in high dimensions. 

H. H. Mattingly, M. K. Transtrum, M. C. Abbott and B. B. Machta, Maximizing the information learned from finite data selects a simple model, PNAS 115 
(2018) 1760–1765 [arXiv:1705.01166].





Jeffreys’ Prior is Evil 
for sloppy models

Mattingly, Transtrum, Abbott, 
Machta (not me)

Two parameters

Jeffreys Optimal
Lognormal Slab-and-spike

26 parameters

Indeed, Jeffrey’s prior suffers lethally of the curse of dimensionality. A uniform weight for all points on the model manifold works well in two dimensions, 
but all the weight of a hyperobject is near its center — massively distorting the Bayesian prediction for fits to the data. My colleagues have developed and 
explored two reparameterization-invariant priors — one which maximizes the mutual information (at the cost of being concentrated on a set of measure 
zero), and one they call a slab-and-spike prior which is nearly optimal and more conventional. Both give a weight to the simpler models on the boundary 
that is determined by the errors in the measurements being fit.


