
Visualizing model 
behavior

Visualizing a high-dimensional model manifold must be done by torturing it into two or three dimensions. If the model manifold is a hyperribbon, this can 
be done elegantly by aligning the important long ‘stiff’ axes properly and projecting the points on the manifold onto them.



Visualizing least-squares 
model manifolds

Least-squares models have a behavior space 
in . We can view the model manifold using 
tools of linear algebra: 

SVD: Singular value decomposition 
PCA: Principal component analysis 
MDS: Multidimensional scaling 

  

ℝM

For nonlinear least-squares models, both the parameter space and the behavior space are linear vector spaces, and we can use linear algebra methods to 
rotate the manifold optimally for projection.



Eigenvalues and matrix 
factorization

For symmetric and Hermetian matrices (used in physics), 
we use eigenvalues and eigenvectors. These can be 
viewed as a matrix factorization 

      . 

So  squeezes the orthonormal direction . This can be 
written , where  is a 
rotation that aligns the axes to the squeezed directions.

M = VTΛV =

̂e1
̂e2

⋯
̂eN

λ1 0 …
0 λ2 …
⋯
⋯ ⋯ λN

( ̂e1, ̂e2, ⋯ ̂eN)

λn ̂en
Mαβ = VδαΛδδ′ Vδ′ β VTV = VδαVδβ = δαβ

Physicists are used to symmetric and Hermitian matrices, for which eigenvalues and their eigenvectors characterize their behavior. We can view them as a 
way to factorize a matrix into three components, rotating it to align with the stretched directions. Matrix factorization is a common and flexible method in 
machine learning. If our Jacobian were square and symmetric, we could just use the coefficients along the three largest eigenvalues as coordinates for a 3D 
plot of the model manifold.



Decomposing the metric 
tensor part 1

We can use this to decompose our metric tensor 
. Remember  is the MxN Jacobian 

that takes small displacements in parameters into 
displacements in behavior (i.e., in the tangent space to the 
model manifold): 

                        

Here the columns of V form an orthonormal basis for 
parameter space that are aligned with the stiff and 
sloppy eigendirections.

gαβ = JTJ = JiαJiβ Jiα

g = JTJ = VTΛV

We have been studying the stiff and sloppy directions in parameter space. This introduces an eigenvector matrix decomposition of the metric, with V 
rotating the axes to align with the stiff directions.



Decomposing the metric 
tensor part 2

What about , the MxM matrix in behavior 
space? It gives us an orthonormal decomposition 

 

U has columns  along the tangent of the mth most 
important axis of the hyperribbon. For monomials it is the 
mth longest axis of the hyperellipsoid.

JJT = JiαJjα

JJT = UTΛU =

̂f1
̂f2

⋯
̂fM

λ1 0 ⋯ 0
0 λ2 ⋯ 0
⋯
0 ⋯ λN ⋯ 0
0 ⋯ 0 ⋯ 0
⋯
0 ⋯ 0 ⋯ 0

( ̂f1, ̂f2, ⋯ ̂fM)

̂fm

Decomposing J JT gives us the basis in behavior space that sits along the tangent of the model manifold, giving the directions that are stretched and 
squeezed by the model y_theta.



Singular value 
decomposition

For any matrix J (non-symmetric, non-square, …) we 
can find its singular value decomposition. 
U and V are as before, and the MxN matrix  has the 
square roots of the eigenvalues  along the 
diagonal:  

               

The singular values  give the amount that axis is 
squeezed by the mapping J.

Σ
σα = λα

J = UΣVT

JTJ = g = VΣUTUΣVT = VΣ2VT = VΛVT

JJT = UΣ2UT = UΛUT

Jiα = UijΣjβVαβ
σα

It should be no surprise that we can derive this from a matrix product decomposition of our Jacobian J. It squeezes e_alpha by sigma_alpha and rotates it 
into f_alpha. If the singular values sigma_alpha span many orders of magnitude, this yields a sloppy model in parameter space with a hyperribbon in data 
space.



Principal Component 
Analysis

Singular value decomposition is widely used to 
analyze data. Suppose we have a MxN data matrix 
with N columns  describing experiments yielding M 
behaviors: . We presume the behaviors 
are centered, so that the vectors  sum to zero. (This is 
the only difference from SVD.) Then 

 , …, and  gives the 
coordinates along the principal components. Plotting the first 
three coordinates (with the largest singular values  ) 
allows one to view the distribution of results in behavior space.

Eα
D = (E1, …, EN)

Eα

D = UΣVT = UijΣjβVαβ VΣ

σ1, σ2, σ3

Principal component analysis takes data from experiments and uses SVD to rotate it so as to visualize the most important three axes. It is extensively used 
in big data applications, in systems biology and many other fields. We also use it to visualize our model manifolds, with data given by sampling many 
predictions throughout parameter space.

PCA is a standard tool for pulling out the directions of largest variation in high-dimensional data sets. We argue that it is so often useful because of 
sloppiness — only a few long directions need to be visualized in a flat hyperribbon for least-squares models fit to data.



Multidimensional Scaling
MDS is PCA when you don’t have vectors, but do have a 
‘squared distance’. 
The singular vectors  in PCA are also the 
eigenvectors of , so . The matrix of 
squared distances  has the same 
dot products, but with some extra terms that become zero 
for centered data (subtracting the mean of experiments). 
  
MDS defines coordinates  for a matrix 

, using its eigenvectors and the square 
roots of its eigenvalues, for a general distance measure (after 
‘centering’ in a sneaky way).  
The negative eigenvalues give pure imaginary distances, 
which turn out to be quite useful… 

V
M = DTD Mαβ = Eα ⋅ Eβ

M̃αβ = − (1/2)(Eα − Eβ)2

VΣ
M̃αβ = − (1/2) d(Eα, Eβ)

Multidimensional scaling is used when you can define a squared distance between the results of every pair of experiments, but the experiments can’t be 
expressed in terms of a vector of measurements. By using the matrix of squared distances, the square roots of its eigenvalues are involved in the MDS 
coordinates. But when some of the eigenvalues are negative, this leads to some time-like coordinate axes (with pure imaginary coordinates, with negative 
contributions to the squared distance). This leads us to an isometric embedding in Minkowski space.



Bypassing the curse of 
dimensionality: 

Visualizing probabilistic 
models

Let us now turn to visualizing probabilistic models. Here we shall discover a ‘curse of dimensionality’ — a common problem in big data and machine 
learning. We shall find two ways of dodging this curse.



Visualizing the Model Manifold
Katherine Quinn, Itay Griniasty, Han Kheng Teoh

           = Fisher Information Metric 
Isometric embedding defined by model 
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Now we turn to visualizing model manifolds for more general, probabilistic models.

But what about models which predict not data points, but probability distributions? We have discovered a family of ‘intensive’ embeddings — a method 
which finds a low-dimensional isometric embedding respecting the natural distance in the space of probability distributions (the Fisher Information 
metric). 
Here we see how they can represent the predictions of a large Ising model, the 𝚲CDM model for the cosmic microwave background radiation, and the 
learning paths for deep neural networks.
We need to embed them in a space with a Minkowski-like metric to avoid the curse of dimensionality.



What is the shape of 
probability space?

Our NLLS model manifolds are embedded in a Euclidean space, with each prediction given its own axis, and a metric which is a sum of squares (weighted 
by the error bars on the measurements, or on the predictions of the model.

Our probabilistic models sweep out a surface in a space of probability distributions. We are told its metric is the FIM. But what is its shape?



 

An isometric embedding preserves local distances. A disk can be wrapped around a cylinder, or crumpled, and still be isometric. But it can’t be mapped in 
3D onto a torus, because the torus is positively curved on the outside, and negatively curved in the doughnut hole.



 

It turns out that the triangle of possible probabilities rho(3) = 1 - rho(1) - rho(2) does not have the correct FIM metric for probability distributions. Instead, 
treating the element-wise square root as a vector on the positive octant of the unit sphere works as an isometric embedding of the entire 3 sided die.



Hellinger distance

d2
Hellinger(ρ1, ρ2) =

3

∑
n=1

( ρ1(n) − ρ2(n))2

= 2 − 2
3

∑
n=1

ρ1(n) ρ2(n)

= 2 − 2 ρ1(n) ⋅ ρ2(n)

The resulting distance on this 
sphere is due to Hellinger.

Any probabilistic model can be viewed as a submanifold on 
this sphere, and we could use PCA to draw low-dimensional 
projections of it. This fails spectacularly.

So, and N-spin Ising model manifold is a 2D surface lying on the sphere in 2^N dimensions. Why can’t we use PCA to view it?



Curse of dimensionality

Machine learning and big data are plagued by the ‘curse of dimensionality’. In our work, we faced this in trying to visualize probability distributions for 
large systems. We want our distance measure to be useful in describing probability distributions as they separate far away: we want P and Q to be three 
times farther apart than P and S. But in the space of probability distributions, all non-overlapping probability distributions are the same squared distance 
apart on the unit sphere, 2 - sqrt{P} . sqrt{Q) = 2. The geodesic is shown in (a). What happens is that the path (PSRQ) on the Hellinger sphere bends into a 
new dimension each time a new Gaussian becomes orthogonal to all the others, forming a hypertetrahedron.



Must crumple to fit into ℝ3

A Gaussian fit with mean  and rms  has a hyperbolic space as a 
model manifold: a surface with constant negative curvature.

μ σ

Minkowski 
space

Han Kheng 
Teoh: isKLe

Euclidean space

Daina Taimina

So, adding a width to our Gaussians gives us a model with two parameters, the mean mu and standard deviation sigma. Just as the line of constant-mean 
Gaussians parameterized by mu must crumple up into many dimensions to fit onto the unit sphere, 2D hyperbolic space, although it can be squeezed into 
three dimensions, must get very wiggly and crumpled. We bypass this by embedding it into a (flat) Minkowski space. The Esher painting is not isometric, 
but — if the vertical axis displacement squared is counted with a minus sign, Han Kheng’s isKLe embedding is.



Friday:  
Katherine Quinn: Replicas & 

inPCA 
Griniasty: Visualizing learning 

trajectories for deep neural 
networks using inPCA

17



inPCA: Taking the limit of 
zero data

Machine learning and big data are plagued by the ‘curse of dimensionality’. In our work, we faced this in trying to visualize probability distributions for 
large systems.



 InPCA Intensive embeddings
Katherine Quinn, Colin Clement
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Minkowski space.

The challenge we faced is to find a low-dimensional representation. 
Big data applications routinely face a curse of dimensionality — most pairs of points are orthogonal, and often equally distant from one another. Big Ising 
models face the same problem. Once the parameters differ by enough to make their magnetizations and correlations clearly distinguishable, the geodesic 
distance in probability space saturates. 
We see this in going from a 2x2 Ising model to a 4x4 Ising model using a traditional ‘Hellinger’ embedding. Going to a 128x128 Ising model shifts most 
pairs of points into orthogonal directions — projected on the upper right by the dark clump at the center. Here we mimic the 128x128 Ising model as 64^2 
samples 2x2 Ising models.
We want a metric that is intensive — we want the limit of zero replicas of the 2x2 Ising model. This leads directly to our InPCA method.



inPCA as limit of zero data
Baby replica theory

Consider the Hellinger distance for an Ising model

The dot product goes to zero when one sample  is enough to tell  
 from . Consider  samples of the Ising model: 

.
The distance per replica is now 

The replica trick tells us , yielding a zero-

replica divergence between the two distributions originally due to 
Bhattacharyya, .

The same limit applied to PCA rediscovers the MDS technique. 

d2
Hellinger(ρ1, ρ2) = 2 − 2 ρ1 ⋅ ρ2 = − 2( ρ1 ⋅ ρ2 − 1)

s
ρ1 ρ2 n

ρ[n](s1, …, sn) = Πiρ(si)

(1/n)(d [n]
Hellinger)

2(ρ1, ρ2) = − (2/n)( ρ[n]
1 ⋅ ρ[n]

2 − 1) = − 2(( ρ1 ⋅ ρ2)n − 1)/n

lim
n−>0

(xn − 1)/n = log(x)

d2
Bhatt(ρ1, ρ2) = − 2 log( ρ1 ⋅ ρ2)

The dot product of two distributions after n measurements of the system is the nth power of the dot product after one measurement. Choosing to consider 
the squared distance per measurement, we use the replica trick to find that the squared distance is now minus two times the log of the dot product — the 
Bhattacharyya divergence. We also rediscover the multidimensional scaling method for using any distance measure to draw pictures.



 Manifold of possible Universes
Katherine Quinn, Mike Niemack

The eigenvalues 
are sloppy, and 
the first two 
inPCA 
components have 
meaning.
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Taking the limit of zero data, we generalized PCA to use the Bhattacharyya
divergence instead of the Hellinger distance, yielding the model manifold
here shown projected onto the largest two inPCA components. On the left find
the sloppy eigenvalues evaluated at the best fit to our Universe (dot near
center). On the right, find the lengths of the model manifold as measured by
the variance of the inPCA components (not as sloppy).



Visualizing Deep Neural Networks 
Mao, Chaudhari, Griniasty, Teoh

First three inPCA singular components capture 76% of the motion
Hyperribbon formed by neural net ensemble during training

We can watch how neural networks learn with our visualization methods. Here each dot is a snapshot of a single neural network as it learns 50000 images. 
They all start out ignorant at the beginning, and figure out which are frogs and which are cats by the end. The probability space has around half a million 
dimensions. Three inPCA components capture 76% of the information about their learning paths. What is amazing is not that we can tell the differences
between different network architectures. It is that we can view them at all
for such a complex, nonlinear, high-dimensional learning process.



isKLe: Explicit coordinates 
for exact intensive 
embedding in finite  

dimensions

Han Kheng Teoh
Katherine Quinn



isKLe for Stat Mech

Info Geometry: symmetrized KL as distance (Han-Kheng Tao)

Deep links in a global distance

d2
sKL(ρ1, ρ2) = ∑

x

(ρ1(x) − ρ2(x))log(ρ1/ρ2) = ⟨log(ρ1/ρ2)⟩ρ1
+ ⟨log(ρ2/ρ1)⟩ρ2

Statistical Mechanics (Ising)

, 

where , , ,  

⟨log ρi⟩ρj
= − log Zi − βiej + himj

e = Σsisj m = Σsi β = J/kBT h = H/kBT

Explicit Coordinates for Model Manifold

Space-like / Time-like coordinates  and ;
Squares contribute positively and negatively to 

d2
sKL(ρ1, ρ2) = −(β1 − β2)(e1 − e2) + (h1 − h2)(m1 − m2)

= (1/4)[((e1 − β1) − (e2 − β2))2 − ((e1 + β1) − (e2 + β2))2

+((m1 + h1) − (m2 + h2))2 − ((m1 − h1) − (m2 − h2))2]
(e ± −β)/2 (m ± −h)/2

d2
sKL

Exploring alternative intensive distances to the Bhattacharyya distance, Han Kheng Tao discovered that the symmetrized Kullback-Leibler divergence gave 
an intensive embedding for many problems that lived in a finite-dimensional Minkowski-like space. Probing further, we found that we could express the 
coordinates in terms of the ‘natural parameters’ and ‘sufficient statistics’ for any probability rho in an ‘exponential family’. For the Ising model, the 
coordinates are in terms of familiar quantities: temperature and energy, field and magnetization.



2D Ising Model: isKL Embedding 
Han Kheng Teoh, Katherine Quinn, Colin Clement

 2+2 Minkowski space. Light-like direction allows distinction between 
fully magnetized states at high fields and various temperatures. 

isKLe is model graph, tilted by π/4

(β, h)

Here is the isKL embedding of the model manifold of the 2D Ising model in a field. We just ran Monte Carlo and plotted it! Note that we can think of the 
embedding as a 4D plot of the results (e, m) versus the parameters (beta, h), tilted by 45 degrees (which is not an allowed rotation in Minkowski space). 
Note the critical point. There is a weird fact, that the +-M(T) states at H=0 are at zero FIM distance from one another (because they have the same free 
energy). Note that isKLe also nicely distinguishes them using a light-like coordinate. 
Is this a hyperribbon? It is infinitely thin in all but the first four cross-sections!



Big Questions
Consequences of Sloppiness

• PCA useful because high-dimensional data sets dominated by 
a few ‘component’ directions with large variation

• The best algorithms for least-squares fits approximate 
geodesics on the model manifold

• Biological evolution is moving in a high-dimensional sloppy 
genotype space whose phenotype space is a hyperribbon.

• Gross simplifications capture reality
– Humans simplify images into ‘cartoons’
– Experts distill experience into ‘intuition’ 
– Big data draws low-dimensional representations from 

high-dimensional data sets 
– Macroeconomics, systems biology use grossly 

oversimplified models to predict system behavior
Underlying hyperribbons explain why cartoons work? Or 
cartoons work because we use hyperribbons to analyze reality?

• PCA useful because high-dimensional data sets dominated by a few ‘component’ directions with large variation
• The best algorithms for least-squares fits approximate geodesics on the model manifold
• Biological evolution is moving in a high-dimensional sloppy genotype space whose phenotype space is a hyperribbon.
• Gross simplifications capture reality

– Humans simplify images into ‘cartoons’
– Experts distill experience into ‘intuition’ 
– Big data draws low-dimensional representations from high-dimensional data sets 
– Macroeconomics, systems biology use grossly oversimplified models to predict system behavior

Underlying hyperribbons explain why cartoons work? Or cartoons work because we use hyperribbons to analyze reality?





Control and Carnot Corrections
Ben Machta (not me)
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Variable Transmission 
𝜃 = Pressure 

Mass falls to drive 
piston  

(steady costs entropy) 
Pressure fluctuations 

allow mass to fall 
(slow costs entropy)

h�Scontroli = 2

Z Pf

Pi

p
gPP dP
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Machta vs. fungibility of entropy
Can information & thermodynamic entropy be exchanged?
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Szilard Engine 
(Bennett, Feynman)

Szilard argued that information can be 
exchanged for work. Feynman 
envisions a locomotive burning 

information from a data tape storing 
bits as atoms on one side or another 

of a partitioned piston.

Work done by 
expanding piston is  

kT log 2 = T 𝚫S Machta argues that 
controlling the piston will 

cost entropy 4 k log 2, a net 
loss!

h�Scontroli = 4
p
N log(Pa/Pb) + 2

p
15N log(T1/T2)
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Carnot Cycles on the Piston Manifold

Carnot cycle 
Isothermal Expansion, 

Adiabatic, Change Bath, 
Isothermal, Adiabatic 

Model Manifold is a plane, 
Cartesian coordinate change 
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Machta’s entropy cost sub-extensive: 
Refrigerators OK (√N)


