InPCA as a lense

The Training Process of Many Deep Networks Explores the Same Low-Dimensional Manifold

Itay Griniasty griniasty@cornell.edu

• Mao, Griniasty, Yang, Teoh, Transtrum, Sethna & Chaudhari. *arXiv:2305.01604*.

DNNs the canonical synthetic emergent machine

Me: Hi, please create an image representing the complex functionalities large language models can perform.

ChatGPT4: Here is the image representing the complex functionalities of large language models. It depicts a futuristic and intricate machine symbolizing a large language model, surrounded by diverse groups of people engaging with it. The scene captures the advanced technology and intelligence of these models.

MANY parameters MANY outputs

A Sketch of a Neural Network

Input

Hidden Layers

Minimize Loss = Difference between Prediction and Truth

Input

A Sketch of Training

Why Can We Train DNNs?

How can we train a 10^{11} dimensional machine in a year?

This is a high-dimensional $(10^6 - 10^{12} \text{ weights})$, large scale (millions of images) and non-convex optimization problem

How Much Do The Architecture / Algorithm / Augmentation Matter?

Li et al. NeurIPS 2018

Many DNN Designs, What Is The Difference?

Recurrent Network

Residual Network

Transformer Network

Many DNN Designs, What Is The Difference?

Recurrent Network

AlexNet

Transformer Network

How Do We Visualize the Output?

Network Represented over N Samples

Sample *x* Network with Weights *w*

ImageNet: 10^6 Images, 1,000 Classes ~ 10^9 Dimensions

s:
$$P_w(\vec{y}) = \prod_{n=1}^N p_w^n(y_n | x_n)$$

Class y

Dog

CIFAR-10: $5 \cdot 10^4$ Images, 10 classes ~ $5 \cdot 10^5$ Dimensions

High Dimensional Output is Cursed

 p^n

Even if
$$p_1 \cdot p_2 = 1 - \epsilon$$

For many samples $P = \prod_{n=1}^{N}$

1

all probabilities are orthogonal

$$P_1 \cdot P_2 = \prod_n p_1^n \cdot p_2^n \approx 0$$

Natural metric can't discern close from far

$$d_H^2(P_1, P_2) = 0.5 ||P_1 - P_2||^2$$

How Do We Visualize **High Dimensional Data?**

 $= 1 - \left[p_1^n \cdot p_2^n \approx 1 - e^{-N\epsilon} \right]$

n

Intensive Embeddings

Quinn et al. PNAS 2019

Computational Intensive Geometry

Truth: $P_* = \delta_{\vec{y}*}(\vec{y}), \vec{y}^* =$ True label

The Training Process explores a Low Dimensional Manifold

~2,000 Configurations

~150,000 Networks

- Architectures
- Optimization:
 - SGD, SGDN, ADAM
- Hyper Parameters
 - Learning Rate, Batch Size
- Regularization
- Data augmentation
- 10 Random seeds

The Training Process explores a Low Dimensional Manifold

~2,000 Configurations

~150,000 Networks

- Architectures
- Optimization:
 - SGD, SGDN, ADAM
- Hyper Parameters
 - Learning Rate, Batch Size
- Regularization
- Data augmentation
- 10 Random seeds

Intensive Embedding are Minkowski $\mathbb{R}^{q,p-q}$

$$ds^2 = dx^2 - dt^2$$

Light Cones $dx = \pm dt$ **Connects Different Models** With Equal Predictions

Intensive Embedding are Minkowski $\mathbb{R}^{q,p-q}$

Model Manifold of the 2D Ising model Teoh et al. PRR 2020

$$ds^2 = dx^2 - dt^2$$

Light Cones $dx = \pm dt$ **Connects Different Models** With Equal Predictions

Test Embedding is also Low Dimensional

What Can We Learn About Different Configurations?

~2,000 Configurations ~150,000 Networks

- Architectures
- Optimization:
 - SGD, SGDN, ADAM
- Hyper Parameters
 - Learning Rate, Batch Size
- Regularization
- Data augmentation
- 10 Random seeds

A Larger Network Trains Along the Same Manifold as a Smaller Network With a Similar Architecture (But is Faster)

Distance between trajectories

Define progress \approx "geodesic arclength parametrization" to remove speed $d(\tau_u, \tau_v) = \int d_B(P_{u(s)}, P_{v(s)}) ds$ 0.23 Fully. Connected InPC⁻ Geodesic 0.0 Geodesic Progress Small S_W Large Trajectory -0.13ResNet 0.0 ResNet 0.16 InPC2

Architecture- Not training or regularization - primarily distinguished trajectories

Why is the training low dimensional?

Suspects

- 1. Data is Structured Easy and hard Images are common across networks.
- 2. Weights Initialize at ignorance P_0
- 3. Data is Low Dimensional

Why Are The Training Manifolds Low Dimensional?

Suspects

- 1. Data is Structured Easy and hard Images are common across networks.
- 2. Weights Initialize at ignorance P_0
- 3. Data is Low Dimensional

Experiments

- Embed Data using Initial and Final 1. Tangents
- Initialization in multiple corners 2.
- 3. Train on synthetic data with varying effective dimensionality & initialization

Experiment 1: Embed Data using Initial and Final Tangents

Original InPCA

Tangent Embedding **Explained Pairwise Distance**

InPCA using 4 points

Experiment 2: Initialization in multiple corners

Training Data

Test Data

Experiment 3: Synthetic data with varying dimensionality

Experiment 3.2: Synthetic data with varying dimensionality & initialization

SLOPPY INPUTS

NON-SLOPPY INPUTS

Why Are The Training Manifolds Low Dimensional? a hint to why training neural nets is easy, and why they generalize well

- 1. Data is Structured Hard/ Easy images are common
- 2. Data is Sloppy
- 3. Weights Initialized at ignorance P_0 explore few hypothesis

Summary: Intensive Embeddings Uncover that Neural Networks Learn in The Same Way

- 1. InPCA \Rightarrow Computationally feasible distance in high D.
- 2. Sloppiness \Rightarrow Low D visualization
- 3. The Training of Neural Networks Explores the Same Low D Manifold
- 4. Configuration distance \Rightarrow Variation in the path of learning is mostly due to architecture, not optimization technique

The Manifold of Typical Learnable Tasks is Also Low Dimensional

Ramesh et al. ICML 2023