InPCA as a lense

• Mao, Griniasty, Yang, Teoh, Transtrum, Sethna & Chaudhari. *arXiv:2305.01604*.

The Training Process of Many Deep Networks Explores the Same Low-Dimensional Manifold

Itay Griniasty griniasty@cornell.edu

DNNs the canonical synthetic emergent machine

Me: Hi, please create an image representing the complex functionalities large language models can perform.

ChatGPT4: Here is the image representing the complex functionalities of large language models. It depicts a futuristic and intricate machine symbolizing a large language model, surrounded by diverse groups of people engaging with it. The scene captures the advanced technology and intelligence of these models.

MANY parameters MANY outputs

A Sketch of a Neural Network

Hidden Layers

A Sketch of Training

Input

Minimize **Loss** = Difference between Prediction and Truth

This is a high-dimensional (weights), large scale (millions of images) and non-convex optimization problem $10^6 - 10^{12}$

How can we train a 10^{11} dimensional machine in a year? 1011

How Much Do The Architecture / Algorithm / Augmentation Matter?

Why Can We Train DNNs? NB Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well-known that certain network architecture

chosen training parameters (batch size, learning rate, optimizer) produce minimiz-

(a) with skip connections (b) with skip connections (b) with skip connections (b) with skip connections (b) with skip connections (Loss Landscape Li et al. NeurIPS 2018

Many DNN Designs, What Is The Difference?

Transformer Network

Recurrent Network

-
-

Residual Network

Many DNN Designs, What Is The Difference?

Transformer Network

Recurrent Network

AlexNet

How Do We Visualize the Output?

Network Represented over N Samples

Sample *x* Network with Weights *w*

ImageNet: 10^6 Images, 1,000 Classes $\sim 10^9$ Dimensions 10^6 Images, 1,000 Classes ~ 10^9

Dog

CIFAR-10: $5 \cdot 10^4$ Images, 10 classes $\sim 5 \cdot 10^5$ Dimensions $5 \cdot 10^4$ Images, 10 classes $\sim 5 \cdot 10^5$

s:
$$
P_w(\vec{y}) = \prod_{n=1}^{N} p_w^n(y_n | x_n)
$$

Class y

8

all probabilities are orthogonal

Even if
$$
p_1 \cdot p_2 = 1 - \epsilon
$$

For many samples $P = \prod_{n=1}^{N} p^n$

Natural metric can't discern close from far

1 $\cdot p_2^n \approx 1 - e^{-N\epsilon}$ $\sim 1 - \rho^{-N}$ 1

$$
P_1 \cdot P_2 = \prod_n p_1^n \cdot p_2^n \approx 0
$$

$$
d_H^2(P_1, P_2) = 0.5 ||P_1 - P_2||^2 = 1 - \prod p_1^n
$$

n

High Dimensional Output is Cursed We are now poised to define the intensive distance by taking the number of replicas to zero:

How Do We Visualize High Dimensional Data? **Fig. 2.** Replicated Ising model illustrating the derivation of our inten-

h✓**1**; ✓**2**i

sive embedding. All points are colored by magnetic field strength. (*A*)

L (*{x***1**, *...* , *xN} |* ✓))

(*^N*) ⁼ *^L* (*x***¹** *[|]* ✓)*···L* (*xN [|]* ✓), **[6]**

Because of this, the intensive embedding can overcome the loss

of relative contrast (19) discussed at the beginning of this section.

Distances in the intensive embedding maintain distinguishabil-

ity in high dimensions, as illustrated in Fig. 2*B*, wherein the

 $2D$ nature of the Ising model has been recovered. We hypothesis been recovered. We have $\mathcal{L}_\mathcal{D}$

esize that this process, which curse of dimensionality of dimensionality of $\mathcal{O}_\mathbf{C}$

for models with too many samples, with too many samples, will also consider \mathcal{C}

els with intrinsically high dimensionality. The intensive distance

inherent 2D structure of the Ising model has been recovered. $T \cap \bigcap \bigcap \{I\cap A | I\cap A\}$ tance between replicated models. The likelihood for *N* replicas **Intensive Embeddings** \blacksquare sphere, just like the larger, 4 \blacksquare systems have "too much information," in the same way that large numbers of samples have too much information. In the

where the normalization constraint of *L* (*x |* ✓)forces *z^x* to lie on

Quinn et al. PNAS 2019 α ullillicial. Throe colored by magnetic field by magnetic α

Computational Intensive Geometry

 $\textsf{Truth: } P_* = \delta_{\vec{\textnormal{y}}*}(\vec{\textnormal{y}}), \vec{\textnormal{y}}* = \textsf{True}$ label

The Training Process explores a Low Dimensional Manifold

~2,000 Configurations

~150,000 Networks

- **Architectures**
- Optimization:
	- SGD, SGDN, ADAM
- **Hyper Parameters**
	- Learning Rate, Batch Size
- **Regularization**
- Data augmentation
- 10 Random seeds

The Training Process explores a Low Dimensional Manifold

~2,000 Configurations

~150,000 Networks

- **Architectures**
- Optimization:
	- SGD, SGDN, ADAM
- Hyper Parameters
	- Learning Rate, Batch Size
- **Regularization**
- Data augmentation
- 10 Random seeds

Intensive Embedding are Minkowski ℝ*q*,*p*−*^q*

Light Cones Connects Different Models With Equal Predictions $dx = \pm dt$

$$
ds^2 = dx^2 - dt^2
$$

 η $t²$

Intensive Embedding are Minkowski ℝ*q*,*p*−*^q* HAN KHENG TEOH *et al.* PHYSICAL REVIEW RESEARCH **2**, 033221 (2020)

Teoh et al. PRR 2020 Model Manifold of the 2D Ising model **Connects** I

phase transition. The Ising model manifold is embedded into (2 + 2) $\mathbf{v} - \boldsymbol{+} d\boldsymbol{t}$ $\mathcal{W} = \mathcal{W}$ erent iviodels **With Equal Predictions Light Cones Connects Different Models** $dx = \pm dt$

$$
ds^2 = dx^2 - dt^2
$$

Test Embedding is also Low Dimensional

What Can We Learn About Different Configurations?

- Architectures
- Optimization:
	- SGD, SGDN, ADAM
- Hyper Parameters
	- Learning Rate, Batch Size
- Regularization
- Data augmentation
- 10 Random seeds

~2,000 Configurations ~150,000 Networks

A Larger Network Trains Along the Same Manifold as a Smaller Network With a Similar Architecture (But is Faster)

Distance between trajectories

Define progress \approx "geodesic arclength parametrization" to remove speed $d(\tau_u, \tau_v) = \int d_B(P_{u(s)}, P_{v(s)}) ds$ 0.23 Fully. **Connected** InPC1**Geodesic** 0.0 Geodesic **Progress Small Large** S_W Trajectory -0.13 ResNet 0.0 ^{ResNet} 0.16 InPC2

Architecture- Not training or regularization - primarily distinguished trajectories

Why is the training low dimensional?

Suspects

- 1. Data is Structured Easy and hard Images are common across networks.
- 2. Weights Initialize at ignorance P_0
- 3. Data is Low Dimensional

Why Are The Training Manifolds Low Dimensional?

Suspects

- 1. Data is Structured Easy and hard Images are common across networks.
- 2. Weights Initialize at ignorance P_0
- 3. Data is Low Dimensional

Experiments

- 1. Embed Data using Initial and Final **Tangents**
- 2. Initialization in multiple corners
- 3. Train on synthetic data with varying effective dimensionality & initialization

Experiment 1: Embed Data using Initial and Final Tangents

Original InPCA Tangent Embedding Explained Pairwise Distance

InPCA using 4 points

Experiment 2: Initialization in multiple corners

Training Data **Test Data**

Experiment 3: Synthetic data with varying dimensionality

Experiment 3.2: Synthetic data with varying dimensionality & initialization

SLOPPY INPUTS

NON-SLOPPY INPUTS

Why Are The Training Manifolds Low Dimensional? a hint to why training neural nets is easy, and why they generalize well

- 1. Data is Structured Hard/ Easy images are common
- 2. Data is Sloppy
- 3. Weights Initialized at hypothesis

Summary: Intensive Embeddings Uncover that Neural Networks Learn in The Same Way

- 1. InPCA \Rightarrow Computationally feasible distance in high D.
- 2. Sloppiness \Rightarrow Low D visualization
- 3. The Training of Neural Networks Explores the Same Low D Manifold
- 4. Configuration distance ⇒ Variation in the path of learning is mostly due to architecture, not optimization technique

The Manifold of Typical Learnable Tasks is Also Low Dimensional

Ramesh et al. ICML 2023

