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DNNs the canonical synthetic emergent machine
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Me: Hi, please create an image 
representing the complex 
functionalities large language 
models can perform.


ChatGPT4: Here is the image 
representing the complex 
functionalities of large 
language models. It depicts a 
futuristic and intricate machine 
symbolizing a large language 
model, surrounded by diverse 
groups of people engaging 
with it. The scene captures the 
advanced technology and 
intelligence of these models.
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Why Can We Train DNNs?
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How can we train a  dimensional 
machine in a year?


This is a high-dimensional (  
weights), large scale (millions of images) 
and non-convex optimization problem


How Much Do The Architecture / 
Algorithm / Augmentation Matter? 
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [3], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [43]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Li et al. NeurIPS 2018
Loss Landscape
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How Do We Visualize the Output?
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High Dimensional Output is Cursed
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Even if  


For many samples 


all probabilities are orthogonal
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Replica Theory and the Intensive Embedding

We saw in Fig. 1 that increasing the dimension of the data led
to a saturation of the distance function Eq. 4. This problem is
referred to as the loss of relative contrast or the concentration
of distances (19), and to overcome it requires a non-Euclidean
distance function, discussed below. In the previous section we
saw the same saturation of distance could be achieved by adding
replicas, increasing the embedding dimension. Fig. 2A shows this
process taken to an extreme: the model manifold of the 2⇥ 2
Ising model with the number of replicas taken to infinity. All of
the points cluster together, obscuring the fact that the under-
lying manifold is 2D. To cure the abundance of information
which makes all points on the hypersphere equidistant, we seek
an intensive distance, such as the distance per number of repli-
cas observed. Next, because the limit of many replicas artificially
leads to the same symptoms of the curse of dimensionality, we
consider the limit of zero replicas, a procedure which is often
used in the study of spin glasses and disordered systems (20).
Fig. 2B shows the result of this analysis, the intensive embed-
ding, where the distance concentration has been cured, and the
inherent 2D structure of the Ising model has been recovered.

To find the intensive embedding, we must first find the dis-
tance between replicated models. The likelihood for N replicas
of a system is given by their product

L ({x1, . . . , xN} |✓))(N ) =L (x1 |✓)· · · L (xN |✓), [6]

where the set {x1, . . . , xN} represents the observed data in the
replicated systems. Writing the inner product or cosine angle
between two distributions as

h✓1;✓2i=
p

L (x |✓1)·
p

L (x |✓2), [7]

and using Eq. 4, the distance per replica d
2
N between two points

on the model manifold is

d
2
N (✓1,✓2)=

d
2(✓1,✓2)

N
=�8

h✓1;✓2iN � 1
N

. [8]

We are now poised to define the intensive distance by taking the
number of replicas to zero:

A B

Fig. 2. Replicated Ising model illustrating the derivation of our inten-
sive embedding. All points are colored by magnetic field strength. (A)
Large dimensions are characterized by large system sizes; here we mimic a

128 ⇥ 128 Ising model which is of dimension 21282
. The orthogonality prob-

lem becomes manifest as all points are effectively orthogonal, producing a
useless visualization with all points clustered in the cusp. (B) Using replica
theory, we tune the dimensionality of the system and consider the limit
as the number of replicas goes to zero. In this way, we derive our inten-
sive embedding. Note that the z axis reflects a negative-squared distance, a
property which allows violations of the triangle inequality and is discussed
in the text.

d
2
I (✓1,✓2)= lim

N!0
d
2
N (✓1,✓2)=�8 log h✓1;✓2i . [9]

The last equality is achieved using the standard trick in replica
theory, (xN � 1)/N ! log x as N !1, which is a basis trick
used to solve challenging problems in statistical physics (20). The
trick is most evident using the identity x

N =exp(logNx )⇡ 1+
N log x . One can check that the intensive distance is isometric,

d
2
I (✓,✓+ �✓)= �✓↵�✓�g↵� = �✓↵�✓�I↵� , [10]

where again I is the Fisher information metric in Eq. 5, so that
we can be confident the intensive embedding distance preserves
local structures.

Importantly, the intensive distance does not satisfy the trian-
gle inequality (and is thus non-Euclidean): The distance between
points on the hypersphere can go to infinity, rather than lie
constrained to the finite radius of the hypersphere embedding.
Because of this, the intensive embedding can overcome the loss
of relative contrast (19) discussed at the beginning of this section.
Distances in the intensive embedding maintain distinguishabil-
ity in high dimensions, as illustrated in Fig. 2B, wherein the
2D nature of the Ising model has been recovered. We hypoth-
esize that this process, which cures the curse of dimensionality
for models with too many samples, will also cure it for mod-
els with intrinsically high dimensionality. The intensive distance
obtained here is proportional to the Bhattacharyya distance
(21). Considering the zero-replica limit of the Hellinger diver-
gence, we discovered a way to derive the Bhattacharyya distance.
The importance of this is discussed further in the following
section.

Connection to Least Squares. Consider the concrete and canonical
paradigm of models fi(✓) with data points xi and additive white
Gaussian noise, usually called a nonlinear least-squares model.
The likelihood L (x |✓)is defined by

� logL (x |✓)=
X

i

(fi(✓)� xi)
2

2�2
i

+ logZ(✓), [11]

where Z sets the normalization. A straightforward evaluation
of the intensive distance given by Eq. 9 finds for the case of
nonlinear least squares that

d
2
I (✓1,✓2)=

X

i

(fi(✓1)� fi(✓2))
2

�2
i

, [12]

so that the intensive distance is simply the variance-scaled
Euclidean distance between model predictions.

Intensive Principal Component Analysis

Classical PCA takes a set of data examples and infers fea-
tures which are linearly uncorrelated. (7). The features to be
analyzed with PCA are compared via their Euclidean distance.
Can we generalize this comparison to use our intensive embed-
ding distance? Given a matrix of data examples X 2Rm⇥p

(with features along the rows), PCA first requires the mean-
shifted matrix Mij =Xij � X̄i =PX , where Pij = �ij � 1/p is
the mean-shift projection matrix and p is the number of sam-
pled points. The covariance and its eigenvalue decomposition
are then

cov(X ,X )=
1
p
M

T
M =X

T
PPX =V⌃V T , [13]

where the orthogonal columns of the matrix V are the natural
basis onto which the rows of M are projected,

Quinn et al. PNAS Latest Articles | 3 of 6
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FIG. 7. Two-dimensional Ising model isKL embedding is used
to illustrate the geometric structure of statistical models with a
phase transition. The Ising model manifold is embedded into (2 + 2)
dimensions. (a) The three-dimensional projection of the Ising model
manifold is colored based on the external magnetic field h. For
β > βc, there is an opening on the manifold due to the spontaneous
magnetization. The two illustrated arms correspond to magnetization
M(β, h) = ±1 with β > βc and are lightlike. The values of Ising
average energy E and magnetization M used were estimated from
simulations with n = 128 × 128 spins. The exact solution at zero
field is depicted by the black line. (b) The Ising model manifold
projections are shown in a descending order based on the manifold
widths along the spacelike/timelike directions. The spacelike direc-
tions are denoted by T + and the timelike directions are denoted by
T −. The analytical expression for each axis of projection is given by
Eq. (40). Reflection symmetry is illustrated with a dotted line along
projections with a external magnetic field h component.

symmetry along H = 0 is depicted with a dotted line. This
observation is further highlighted by having the Ising model
manifold colored based on the external magnetic field h.

At the critical point, there is an opening that corresponds
to the growing spontaneous magnetization. This resolves a
serious-seeming problem with any embedding based on the
Fisher information metric. The FIM can be written in terms
of the free energy, and the free energies for the two zero-
field branches ±M(T ) agree: the two magnetizations are zero
distance apart, even though they manifestly are far apart
in probability space. Any Euclidean embedding will place
them at the same point. The embedding in Minkowski space
resolves this: the zero distributional distance manifests itself
in a large, physically sensible opening in the embedding,
along a line of lightlike separation. This highlights the crucial
role of timelike coordinates in qualitatively differentiating
unlike systems that have the same free energy. This is not the
whole story of lightlike separations, however: the two arms
highlighted at large β in Fig. 7 are also lightlike. These have
a more conventional interpretation: for sufficiently high field,
the configuration with all spins in the direction of the field
becomes the most probable and the resulting distributions are
difficult to distinguish. The isKL spreads these points out as
well.

The connection between phase transitions and differential
geometry has been widely investigated [40–43]. Researchers
have argued that the scalar curvature R can be viewed as
a measurement of interactions and that the divergence of
the scalar curvature signals a phase transition. The leading

singularity in the scalar curvature of the 2D Ising model
manifold as the critical point is approached can be com-
puted from the metric above and the asymptotic scaling form
− log Z ≃ t2F (ht−15/8) + t2 log t2 for t = βc − β to be R ∼
−t−2/ log(t2). For small β − βc, R diverges. Near the critical
point, one might expect to see a cusp as a result. Instead, there
is an opening near the critical point in our embedding and
the surrounding manifold looks smooth. The identification of
each point along the opening with an opposing point suggests
that we may have disguised the cusp in our embedding by
“cutting” the manifold with lightlike displacements, the way
one might remove the point of a cone by cutting up the side.
The connection between the geometry of our manifold and
the singularity of its scalar curvature will be further explored
in future work.

VI. NONEXPONENTIAL FAMILIES: CAUCHY
DISTRIBUTION

The success of the isKL embedding in obtaining an analyt-
ical expression for each coordinate is special to exponential
family distributions. As an example of a nonexponential fam-
ily, we consider the long-tailed Cauchy distribution,

P(x|x0, γ ) = γ

π [γ 2 + (x − x0)2]
. (41)

Interestingly, its FIM, (ds)2 = (2γ 2)−1[(dx0)2 + (dγ )2], has
a constant negative scalar curvature just as the Gaussian fit in
Sec. V E. In fact, there is a deeper connection between the
Gaussian and Cauchy distributions: they both belong to the
location scale family distributions, f (x) = c−1 f ((x − δ)/c),
where δ is the location parameter and c is the scale parameter.
It is known that any location scale distribution has a constant
negative curvature [44]. That the Gaussian and Cauchy dis-
tributions share this property but are distinct indicates that
being locally isometric is not enough to distinguish them.
This demands the use of a global distance as an additional
measure to characterize the model manifold. We embed the
Cauchy distribution manifold using the isKL embedding with
the distance measure [45], which gives

D2
sKL(x1, γ1, x2, γ2) = 2 ln

[
(γ1 + γ2)2 + (x1 − x2)2

4γ1γ2

]
. (42)

Interestingly, the isKL embedding returns a Euclidean em-
bedding for the Cauchy manifold (Fig. 8) to the number
of components we have explored. To compare it with the
Gaussian fits manifold, we have colored the Cauchy manifold
with Escher’s art, Circle Limit IV, as well. Here, we observe
well-preserved bat shapes as compared to Fig. 6. Strikingly,
not only is this also true for any symmetrized Rényi choices,
as shown in Fig. 8(b), but the projections obtained from
different symmetrized Rényi choices appear to be virtually the
same. Thus, D2

sKL is not obviously better than other intensive
Rényi divergences for models not in exponential families.

VII. SUMMARY

In this paper, we demonstrate that any N-parameter proba-
bilistic model that takes the form of an exponential family can
be embedded isometrically into a low-dimensional (N + N )
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We define a probabilistic model L (x |✓), the likelihood of
observing data x given parameters ✓. The model manifold is
defined as the set of all possible predictions, {L (x |✓i)}, which
is a surface parameterized by the model parameters {✓i}. The
parameter directions related to the longest distances along the
model manifold have been shown to predict emergent behav-
ior (how microscopic parameters lead to macroscopic behavior)
(13). We will see that InPCA orders its principal components
by the length of the model manifold along their direction, high-
lighting global structure. The boundaries of the model manifold
represent simplified models which retain predictive power (14),
and the constraint of data lying near the model manifold has
been used to optimize experimental design (15). In this arti-
cle, we study the Ising model, which defines probabilities of
spin configurations given interaction strengths; a neural network,
which predicts the probability of an image representing a single
handwritten digit given weights and biases; and ⇤CDM, which
predicts the distribution of CMB radiation given fundamental
constants of nature.

Hypersphere Embedding

We promised an embedding which both is isometric and
preserves global structures. We satisfy the first promise by
considering the hypersphere embedding

{zx(✓i)}=
n
2
p

L (x |✓i)
o
, [3]

where the normalization constraint of L (x |✓) forces zx to lie on
the positive orthant of a sphere. A natural measure of distance
on the hypersphere is the Euclidean distance, in this case also
known as the Hellinger divergence (16)

d
2(✓1,✓2)= kz(✓1)� z(✓2)k2

=8
⇣
1�

p
L (x |✓1)·

p
L (x |✓2)

⌘
2, [4]

where · represents the inner product over x . Now we can see that
the hypersphere embedding is isometric: The Euclidean metric
of this embedding is equal to the Fisher information metric I of
the model manifold (17),

d
2(zi , zi + dzi)=

X

i

dzidzi =
X

kl

Ikld✓kd✓l . [5]

The Fisher information metric (FIM) is the natural metric of the
model manifold (18), so the hypersphere embedding preserves
the local structure of the manifold defined by L (x |✓).

As the dimension of the data increases, almost all features
become orthogonal to each other, and most measures of dis-
tance lose their ability to discriminate between the smallest and
largest distances (19). For the hypersphere embedding, we see
that as the dimension of x increases, the inner product in the
Hellinger distance of Eq. 4 becomes smaller as the probabil-
ity is distributed over more dimensions. In the limit of large
dimension, all nonidentical pairs of points become orthogo-
nal and equidistant around the hypersphere (a constant dis-
tance

p
8 apart), frustrating effective dimensional reductions and

visualization.
To illustrate this problem with the hypersphere embedding,

consider the Ising model, which predicts the likelihood of observ-
ing a particular configuration of binary random variables (spins)
on a lattice. The probability of a spin configuration is deter-
mined by the Boltzmann distribution and is a function of a
local pairwise coupling and a global applied field. The dimen-
sion is determined by the number of spin configurations, 2N ,

where N is the number of spins. Holding temperature fixed at
one, we vary h and J : external magnetic field (h 2 (�1.3, 1.3))
and nearest-neighbor coupling (J 2 (�0.4, 0.6)), using a Monte
Carlo method weighted by Jeffrey’s prior to sample 12,000 dis-
tinct points. From the resulting set of parameters, we compute
Xij = {zi(✓j)} using the Boltzmann distribution and visualize the
model manifold in the N -sphere embedding of Eq. 3 by project-
ing the predictions onto the first three principal components of
X . Fig. 1A shows this projection of the model manifold of a 2⇥ 2
Ising model which is embedded in 24 dimensions. Fig. 1B shows
a larger, 4⇥ 4 Ising model, of dimension 216. As the dimension
is increased from 24 to 216, we see the points starting to wrap
around the hypersphere, becoming increasingly equidistant and
less distinguishable.

A natural way to increase the dimensionality of a probabilis-
tic model is by drawing multiple samples from the distribution.
If D is the dimension of x , then N identical draws from the
distribution will have dimension D

N . The more samples drawn,
the easier it is to distinguish between distributions, mimick-
ing the curse of dimensionality for large systems. We see this
demonstrated for our Ising model in Fig. 1C, where we drew
four replica samples from the same model. Note that com-
pared with the original 2 ⇥ 2 model, the model manifold of
the four-replica 2 ⇥ 2 model “wraps” more around the hyper-
sphere, just like the larger, 4⇥ 4 Ising model. High-dimensional
systems have “too much information,” in the same way that
large numbers of samples have too much information. In the
next section, we consider the contraposition of the insight that
a large number of replicas lead to the curse of dimension-
ality and discover an embedding which not only is isometric
but also ameliorates the high-dimensional wrapping around the
n-sphere.

A

B C
Fig. 1. (A–C) Hypersphere embedding, illustrating an embedding of the
2D Ising model. Points were generated through a Monte Carlo sampling
and visualized by projecting the probability distributions onto the first
three principal components (28). The points are colored by magnetic field
strength. As the system size increases from 2 ⇥ 2 to 4 ⇥ 4, the orthogo-
nality problem is demonstrated by an increase in “wrapping” around the
hypersphere. This effect can also be produced by instead considering four
replicas of the original system, motivating the replica trick which takes the
embedding dimension or number of replicas to zero.
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The Training Process explores a Low Dimensional Manifold
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• Hyper Parameters
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• Regularization

• Data augmentation

• 10 Random seeds

CIFAR-10  Dimensions∼ 106
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Why Do Intensive Visualizations Work?



Intensive Embedding are Minkowski ℝq,p−q
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Intensive Embedding are Minkowski ℝq,p−q
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FIG. 7. Two-dimensional Ising model isKL embedding is used
to illustrate the geometric structure of statistical models with a
phase transition. The Ising model manifold is embedded into (2 + 2)
dimensions. (a) The three-dimensional projection of the Ising model
manifold is colored based on the external magnetic field h. For
β > βc, there is an opening on the manifold due to the spontaneous
magnetization. The two illustrated arms correspond to magnetization
M(β, h) = ±1 with β > βc and are lightlike. The values of Ising
average energy E and magnetization M used were estimated from
simulations with n = 128 × 128 spins. The exact solution at zero
field is depicted by the black line. (b) The Ising model manifold
projections are shown in a descending order based on the manifold
widths along the spacelike/timelike directions. The spacelike direc-
tions are denoted by T + and the timelike directions are denoted by
T −. The analytical expression for each axis of projection is given by
Eq. (40). Reflection symmetry is illustrated with a dotted line along
projections with a external magnetic field h component.

symmetry along H = 0 is depicted with a dotted line. This
observation is further highlighted by having the Ising model
manifold colored based on the external magnetic field h.

At the critical point, there is an opening that corresponds
to the growing spontaneous magnetization. This resolves a
serious-seeming problem with any embedding based on the
Fisher information metric. The FIM can be written in terms
of the free energy, and the free energies for the two zero-
field branches ±M(T ) agree: the two magnetizations are zero
distance apart, even though they manifestly are far apart
in probability space. Any Euclidean embedding will place
them at the same point. The embedding in Minkowski space
resolves this: the zero distributional distance manifests itself
in a large, physically sensible opening in the embedding,
along a line of lightlike separation. This highlights the crucial
role of timelike coordinates in qualitatively differentiating
unlike systems that have the same free energy. This is not the
whole story of lightlike separations, however: the two arms
highlighted at large β in Fig. 7 are also lightlike. These have
a more conventional interpretation: for sufficiently high field,
the configuration with all spins in the direction of the field
becomes the most probable and the resulting distributions are
difficult to distinguish. The isKL spreads these points out as
well.

The connection between phase transitions and differential
geometry has been widely investigated [40–43]. Researchers
have argued that the scalar curvature R can be viewed as
a measurement of interactions and that the divergence of
the scalar curvature signals a phase transition. The leading

singularity in the scalar curvature of the 2D Ising model
manifold as the critical point is approached can be com-
puted from the metric above and the asymptotic scaling form
− log Z ≃ t2F (ht−15/8) + t2 log t2 for t = βc − β to be R ∼
−t−2/ log(t2). For small β − βc, R diverges. Near the critical
point, one might expect to see a cusp as a result. Instead, there
is an opening near the critical point in our embedding and
the surrounding manifold looks smooth. The identification of
each point along the opening with an opposing point suggests
that we may have disguised the cusp in our embedding by
“cutting” the manifold with lightlike displacements, the way
one might remove the point of a cone by cutting up the side.
The connection between the geometry of our manifold and
the singularity of its scalar curvature will be further explored
in future work.

VI. NONEXPONENTIAL FAMILIES: CAUCHY
DISTRIBUTION

The success of the isKL embedding in obtaining an analyt-
ical expression for each coordinate is special to exponential
family distributions. As an example of a nonexponential fam-
ily, we consider the long-tailed Cauchy distribution,

P(x|x0, γ ) = γ

π [γ 2 + (x − x0)2]
. (41)

Interestingly, its FIM, (ds)2 = (2γ 2)−1[(dx0)2 + (dγ )2], has
a constant negative scalar curvature just as the Gaussian fit in
Sec. V E. In fact, there is a deeper connection between the
Gaussian and Cauchy distributions: they both belong to the
location scale family distributions, f (x) = c−1 f ((x − δ)/c),
where δ is the location parameter and c is the scale parameter.
It is known that any location scale distribution has a constant
negative curvature [44]. That the Gaussian and Cauchy dis-
tributions share this property but are distinct indicates that
being locally isometric is not enough to distinguish them.
This demands the use of a global distance as an additional
measure to characterize the model manifold. We embed the
Cauchy distribution manifold using the isKL embedding with
the distance measure [45], which gives

D2
sKL(x1, γ1, x2, γ2) = 2 ln

[
(γ1 + γ2)2 + (x1 − x2)2

4γ1γ2

]
. (42)

Interestingly, the isKL embedding returns a Euclidean em-
bedding for the Cauchy manifold (Fig. 8) to the number
of components we have explored. To compare it with the
Gaussian fits manifold, we have colored the Cauchy manifold
with Escher’s art, Circle Limit IV, as well. Here, we observe
well-preserved bat shapes as compared to Fig. 6. Strikingly,
not only is this also true for any symmetrized Rényi choices,
as shown in Fig. 8(b), but the projections obtained from
different symmetrized Rényi choices appear to be virtually the
same. Thus, D2

sKL is not obviously better than other intensive
Rényi divergences for models not in exponential families.

VII. SUMMARY

In this paper, we demonstrate that any N-parameter proba-
bilistic model that takes the form of an exponential family can
be embedded isometrically into a low-dimensional (N + N )

033221-10
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Test Embedding is also Low Dimensional

14

CIFAR-10



What Can We Learn About Different Configurations?

15
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A Larger Network Trains Along the Same Manifold as a 
Smaller Network With a Similar Architecture (But is Faster)
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Distance between trajectories
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Define progress  “geodesic arclength parametrization” to remove speed
≈

d(τu, τv) = ∫ dB(Pu(s), Pv(s))ds
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Architecture- Not training or regularization - primarily 
distinguished trajectories

18

InPC2

In
PC

1



Why is the training low dimensional?
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Suspects


1. Data is Structured - Easy and 
hard Images are common across 
networks.


2. Weights Initialize at ignorance 


3. Data is Low Dimensional

P0



Why Are The Training Manifolds Low Dimensional?
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Suspects


1. Data is Structured - Easy and 
hard Images are common across 
networks.


2. Weights Initialize at ignorance 


3. Data is Low Dimensional

P0

Experiments


1. Embed Data using Initial and Final 
Tangents


2. Initialization in multiple corners


3. Train on synthetic data with varying 
effective dimensionality & initialization



Experiment 1: Embed Data using Initial and Final Tangents
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Original InPCA Explained Pairwise DistanceTangent Embedding


InPCA using 4 points



Experiment 2: Initialization in multiple corners 
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Training Data Test Data



Experiment 3: Synthetic data with varying dimensionality
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Experiment 3.2: Synthetic data with varying dimensionality 
& initialization
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Why Are The Training Manifolds Low Dimensional? 
a hint to why training neural nets is easy, and why they generalize well

25

1. Data is Structured - Hard/
Easy images are common


2. Data is Sloppy


3. Weights Initialized at 
ignorance  explore few 
hypothesis

P0 Stiff DOF are 
learned

Sloppy DOF 




Summary: Intensive Embeddings Uncover that Neural 
Networks Learn in The Same Way
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1. InPCA  Computationally 
feasible distance in high D.


2. Sloppiness  Low D 
visualization


3. The Training of Neural 
Networks Explores the 
Same Low D Manifold


4. Configuration distance  
Variation in the path of 
learning is mostly due to 
architecture, not 
optimization technique
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⇒

⇒
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The Manifold of Typical Learnable Tasks  
is Also Low Dimensional
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