Visualizing High-Dimensional Spaces

Basic Training in Condensed Matter 02/09/2024

Katherine Quinn kq57@georgetown.edu

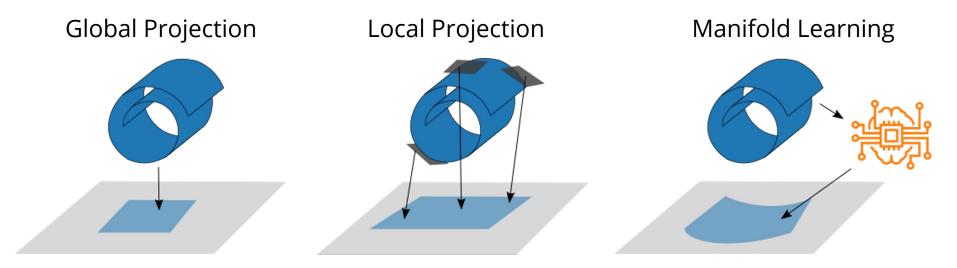
Outline

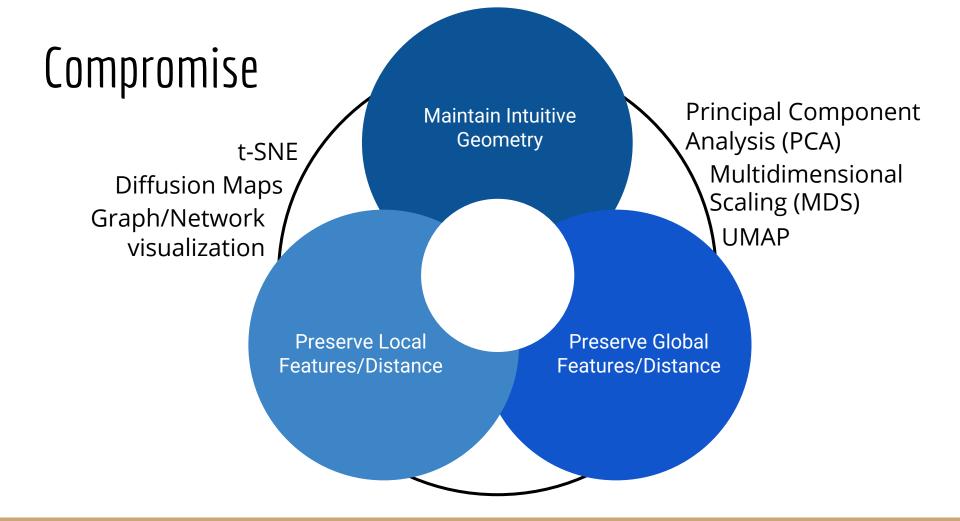
- 1) Standard visualization methods
- 2) Probabilistic models and data
- 3) Intensive PrincipalComponent Analysis (InPCA)

Visualizing high-dimensional spaces is hard. We need to find an embedding space which captures our features of interest.

Visualizing High-Dimensional Spaces

Want to represent an *n*-dimensional space on an 2D plane in a way that keeps features of interest.





Example: Visualizing Text Documents

Patent Documents

Natural language processing with a large language model (LLM)

Visualize with PCA

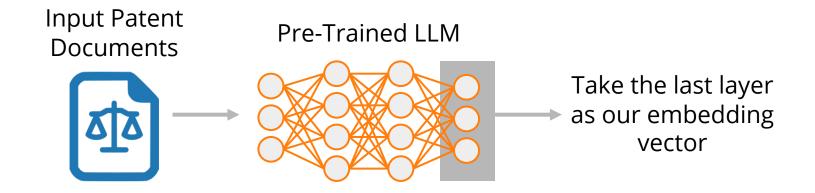
Scholarly Literature

Simple citation network

Visualize with igraph

Patents

- Feed each patent into a pre-trained neural network (*e.g.* SentenceTranformer).
- Take the 768-dimensional embedding space as the model outputs.
- Treat the embedding space as a simple, Euclidean space.



Patents with PCA

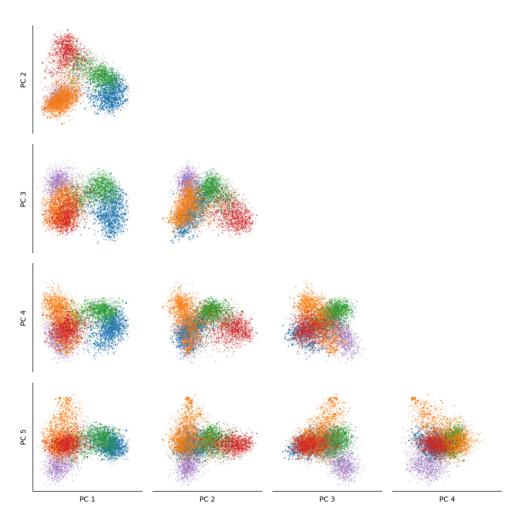
Takes orthogonal directions of maximal variance.

Viewing 11,000 patents in 768D space.

Five dominant components (out of 768).

Colors represent patent categories.

Biotechnology - blue Telecommunications - orange Food_and_tobacco - green Mining_and_quarrying - red Real_estate - purple



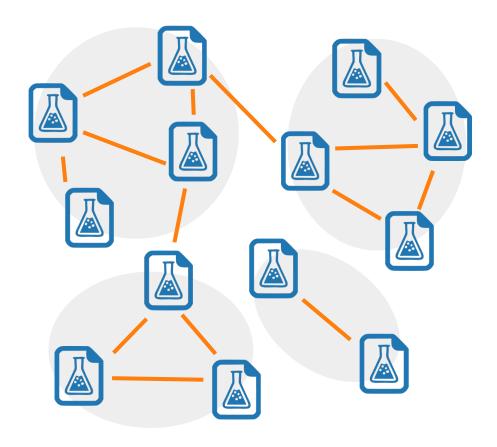
Scholarly Literature

Generate a citation-based network between articles in our merged academic corpus.

Weights are calculated using outgoing citation fractions.

Cluster this network using the Leiden algorithm.

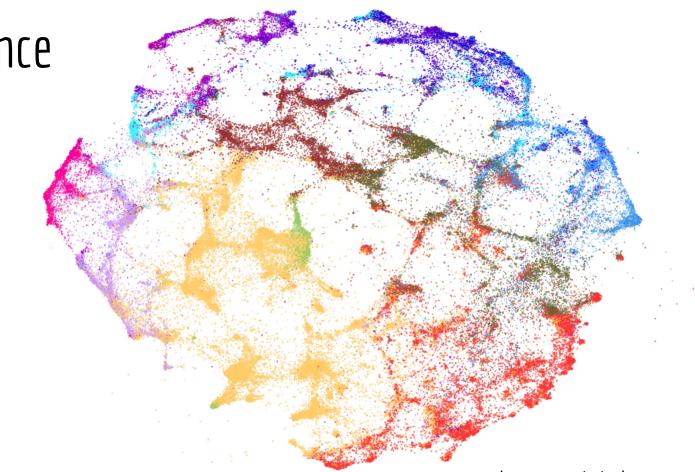
Visualize resulting clusters with igraph.



Map of Science

~85,000 Clusters



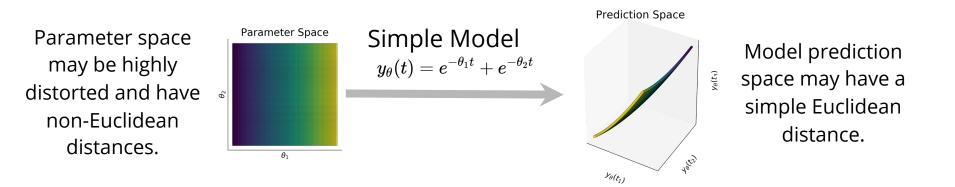


sciencemap.eto.tech

Distances and Embedding Spaces

How we create the low-dimensional visualization determines our *embedding space*, *i.e.* the space in which we view our model or data of interest (*e.g.* parameter space, prediction or behavior space, etc).

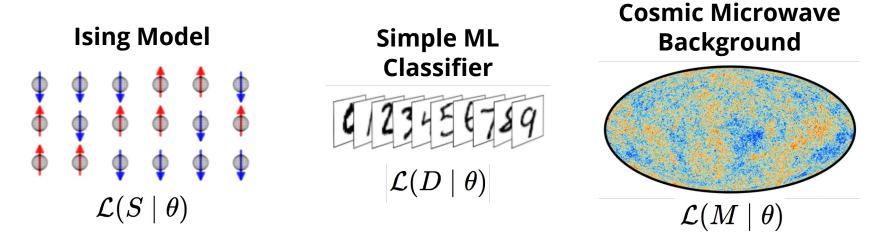
Distance measures can be impacted by the embedding space.



Probability Distributions

Any measurement with uncertainty can be seen as a probability distribution.

Many models have uncertainty, and produce model prediction that are probabilistic.



How to Visualize Collections of Distributions?

Embedding Space

Need a space with an intuitive geometry to visualize distributions.

Distance

Need to measure how similar two distributions are from each other.

Ideally something not too warped (will come back to this).

Want low-dimensional representations.

Divergences: Way of measuring difference between two probability distributions.

Intensive Principal Component Analysis (InPCA)

Combine two known techniques.

- 1. PCA
 - Extract orthogonal directions of maximal variance.
- 2. Replica Theory
 - Tune the dimensionality of the system by considering replicas, *i.e.* drawing multiple samples from the same distribution.

Resulting embedding space will be Minkowski-like (timelike and spacelike components).

Hellinger

Probability distributions are normalized, so their square roots have length one.

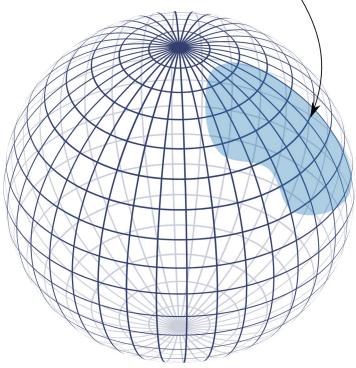
The set of all probability distributions occupy part of the surface of a hypershere.

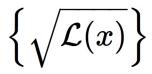
Euclidean distance, metric is FIM.

Distance is one minus dot product.

$$1-\left\langle \sqrt{\mathcal{L}_{1}(x)},\sqrt{\mathcal{L}_{2}(x)}
ight
angle _{x}$$

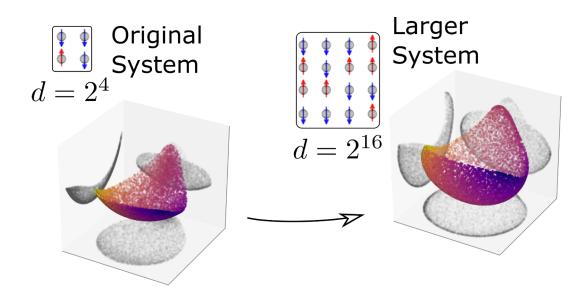
Manifold of Distributions





Curse of Dimensionality

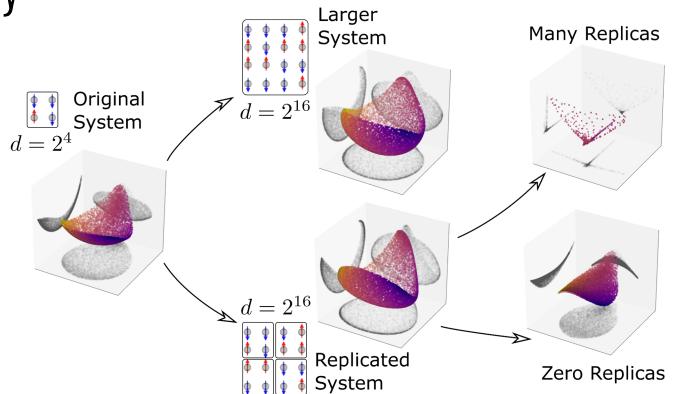
For very high dimensional spaces, distances become saturated and vectors tend to become increasingly orthogonal. Distances will all go to 1.



Replica Theory

Simulate the curse of dimensionality by looking at replicas of the original system.

Consider the limit of zero replicas.



Replica Trick

Replicated Distribution

Hypersphere Distance

Math Trick

Intensive Distance

Looking at replicas of the original distribution (or multiple drawn samples from the same distribution)

$$egin{aligned} \mathcal{L}(x) &
ightarrow \ \mathcal{L}(x_1) \mathcal{L}(x_2) \cdots \mathcal{L}(x_n) \end{aligned}$$

Hypersphere distance from Hellinger uses the dot product, which has a nice relationship with replicas.

 $2\left(1-\left\langle \sqrt{\mathcal{L}_{1}(x)},\sqrt{\mathcal{L}_{2}(x)}
ight
angle _{x}
ight)
ightarrow$

 $2\left(1-\left\langle \sqrt{\mathcal{L}_{1}(x)},\sqrt{\mathcal{L}_{2}(x)}
ight
angle ^{n}
ight)$

 $d^2(\mathcal{L}_1,\mathcal{L}_2) =$

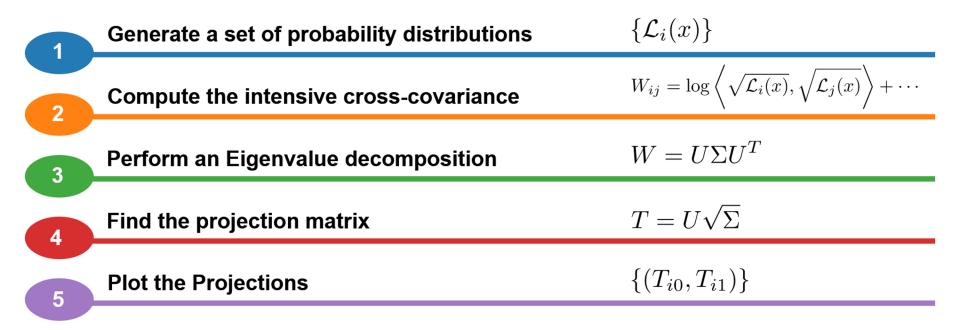
Replica theory relies on the simple math limit.

$$\lim_{n o 0}rac{z^n-1}{n}=\log(z)$$

We obtain a simple distance measure for the limit of zero replicas, related to the Bhattacharyya distance (a known divergence with the FIM as a metric).

$$\lim_{n o 0} rac{d^2(\mathcal{L}_1, \mathcal{L}_2)}{n} =
onumber \ -2 \log \left\langle \sqrt{\mathcal{L}_1(x)}, \sqrt{\mathcal{L}_2(x)}
ight
angle_x$$

Resulting InPCA Algorithm



Visualizing Probabilistic Manifolds with inPCA

Ising Model $\mathcal{L}(S \mid \theta)$ ferromagnetic InPCA1 InPCA2

anti-ferromagnetic

