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Recap : Visualizing Ising model with Hellinger distance
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Recap : Visualizing Ising model with inPCA
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InPCA of Ising model 
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InPCA of Ising model 
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Alternative distance measure : symmetrized KL divergence

Relative entropy  ( KL divergence )
Given distribution 𝑃 and 𝑄

KL 𝑃 𝑄 = 

𝑖

𝑃𝑖 log 𝑃𝑖 − 𝑃𝑖 log 𝑄𝑖

Locally, corresponds to Fisher Information Metric 

Symmetrize it 

KL 𝑃(𝜽) 𝑃(𝜽 + 𝛿𝜽 ≈ FIM

𝐷𝑠𝐾𝐿
2 𝑃, 𝑄 = 

𝑖

𝑃𝑖 − 𝑄𝑖 log
𝑃𝑖

𝑄𝑖

**One can check that symmetrized Kl divergence is intensive as well



Back to Ising 2D model 

𝑃 𝒔 𝛽, ℎ =
exp 𝛽 σ 𝑖,𝑗 𝑠𝑖𝑠𝑗 + ℎ σ𝑖 𝑠𝑖

𝑍(𝛽, ℎ)

= 𝑆𝛽2
− 𝑆𝛽1

2
− 𝑇𝛽2

− 𝑇𝛽1

2
+ 𝑆ℎ2

− 𝑆ℎ1

2
− 𝑇ℎ2

− 𝑇ℎ1

2

Assignment 4.2

𝐷𝑠𝐾𝐿
2 𝑃𝜽𝟏

, 𝑃𝜽𝟐
= 

𝑠

𝑃𝜽𝟏
𝒔 − 𝑃𝜽𝟐

𝒔 log
𝑃𝜽𝟏

𝒔

𝑃𝜽𝟐
(𝒔)

= − 𝛽1 − 𝛽2 𝑒1 − 𝑒2 + ℎ1 − ℎ2 𝑚1 − 𝑚2

⋮

One can show that 𝑆 ⋅  and 𝑇 ⋅  are the axis of projections in 

Multidimensional Scaling (MDS)



Ising 2D model 

2+2 dimension
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Fisher distance = 0

Ising 2D model 

Lightcone – separate physically distinct 
systems that are distributionally similar 



Ising 2D model 

Curvature at critical point diverges , 𝑅~ −
1

𝑡 2 log 𝑡2



Issues raised previously – Fixed!

Manifold widths

Large embedding 
dimensions

Meaning of each 
axis of projection?

Computationally 
expensive for large 

system

Critical point has a 
singularity in the 
scalar curvature. Is 
there a cusp?



Exponential Family

Base Measure 
Natural 
Parameter

Sufficient 
Statistics

Log partition 

𝑝 𝑥 𝜃 = ℎ(𝑥) exp 𝜂 𝜃 Φ 𝑥 − 𝐴(𝜃)  

Coin toss

𝑃 𝑥 𝑝 = 𝑝𝑥 1 − 𝑝 1−𝑥

ℎ 𝑥 = 1 

𝜂 𝑝 = log
𝑝

1−𝑝
 

Φ 𝑥 = 𝑥 

𝐴 𝑝 = − ln(1 − 𝑝) 

Ideal Gas

ℎ 𝑥 = 1 

𝜼 𝜽 = (−𝛽, −𝛽𝑃) 

𝚽 𝒙 =
2𝑚

, 𝑉  

𝐴 𝜽 = − ln 𝑍 𝑃, 𝛽  

Nonlinear least square 

ℎ 𝑥 = − σ𝑖 𝑥𝑖
2/𝜎𝑖

2  

𝜂𝑖 𝜽 = 𝑓𝑖(𝜽)/𝜎𝑖 

Φ 𝑥𝑖 = 𝑥𝑖/𝜎𝑖 

𝐴 𝜽 = σ𝑖 𝑓𝑖
2(𝜽)/2𝜎𝑖

2 + ln(2𝜋𝜎𝑖
2)/2 

𝑃 𝒙 𝜽 = ς𝑖
1

2𝜋𝜎𝑖
2

exp −
𝑓𝑖 𝜽 −𝑥𝑖

2

2𝜎𝑖
2  



Gaussian Fits

Exponential Family Examples

For any 𝑛 parameter statistical model that fits into the exponential family 

𝑝 𝑥 𝜃 = ℎ(𝑥) exp 𝜂 𝜃 Φ 𝑥 − log(𝐴(𝜃)  

isKL embedding gives (𝑛 + 𝑛) embedding dimension

Muon lifetime Ideal Gas

𝑆𝑖 𝜽 =
1

2
𝜆 𝜂𝑖 𝜽 +

1

𝜆
Φi 𝒙 𝜽

𝑇𝑖 𝜽 =
1

2
𝜆 𝜂𝑖 𝜽 −

1

𝜆
Φi 𝒙 𝜽



Non exponential family : Cauchy distribution

Manifold projections

𝜎2 → 0

Least square model 
with 𝜎2 = 1

Cauchy distribution Gaussian distribution

(2+2) embedding∞ dimensional embedding

Manifold projections
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