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6 CHAPTER 1. A NEW KIND OF EMERGENCE

Chapter 1

A new kind of emergence
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Fig. 1.1 Sloppy spectra. The eigenvalues of the (approximate) cost Hessian for models
from a variety of fields. Each has an enormous range of eigenvalues, with roughly uniform
density in log. We see also that models from physics with small parameters, like diffusion and
the Ising model, also show sloppy spectra. Diffusing on a lattice has a continuum limit with
an emergent law given as a partial differential equation. The Ising model has an emergent
scale invariance explained by the renormalization group. Their emergent parameters (diffu-
sion constants, or temperature and field) form the largest, stiff eigenvalues, and they both
have a hierarchy of corrections with smaller eigenvalues and smaller effects on the behavior
(from [11]).
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Fig. 1.2 Hyperribbon lengths. Here we preview our information geometry results on the
hierarchy of ranges in behavior space spanned by our physical models – the widths of their
model manifolds. We call these model manifolds hyperribbons, because each shorter direction
is roughly down by the same factor. (Ribbons are longer than they are wide, and wider than
they are thick . . . ) Ignoring the thin directions allows one to understand the overall behavior
without encompassing all the details at once – an emergent simplicity [11].

Exercises

S1.1 Emergent vs. fundamental. ⃝p

Statistical mechanics is central to condensed matter physics. It is our window into the
behavior of materials—how complicated interactions between large numbers of atoms
lead to physical laws (Fig. S1.3). For example, the theory of sound emerges from the
complex interaction between many air molecules governed by Schrödinger’s equation.
More is different [2].
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Fig. S1.3 Emergent. New laws describing macroscopic materials emerge from complicated
microscopic behavior [16].

For example, if you inhale helium, your voice gets squeaky like Mickey Mouse. The
dynamics of air molecules change when helium is introduced—the same law of motion,
but with different constants.

(a) Look up the wave equation for sound in gases. How many constants are needed? Do
the details of the interactions between air molecules matter for sound waves in air?

Statistical mechanics is tied also to particle physics and astrophysics. It is directly im-
portant in, e.g., the entropy of black holes (Exercise 7.16), the microwave background
radiation (Exercises 7.15 and 10.1), and broken symmetry and phase transitions in the
early Universe (Chapters 9, 11, and 12). Where statistical mechanics focuses on the
emergence of comprehensible behavior at low energies, particle physics searches for the
fundamental underpinnings at high energies (Fig. S1.4). Our different approaches reflect
the complicated science at the atomic scale of chemistry and nuclear physics. At higher
energies, atoms are described by elegant field theories (the standard model combining
electroweak theory for electrons, photons, and neutrinos with QCD for quarks and glu-
ons); at lower energies effective laws emerge for gases, solids, liquids, superconductors,
. . .
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Fig. S1.4 Fundamental. Laws describing physics at lower energy emerge from more fun-
damental laws at higher energy [16].

The laws of physics involve parameters—real numbers that one must calculate or mea-
sure, like the speed of sound for a each gas at a given density and pressure. Together
with the initial conditions (e.g., the density and its rate of change for a gas), the laws
of physics allow us to predict how our system behaves.

Schrödinger’s equation describes the Coulomb interactions between electrons and nu-
clei, and their interactions with electromagnetic field. It can in principle be solved to
describe almost all of materials physics, biology, and engineering, apart from radioac-
tive decay and gravity, using a Hamiltonian involving only the parameters ℏ, e, c, me,
and the the masses of the nuclei.1 Nuclear physics and QCD in principle determine
the nuclear masses; the values of the electron mass and the fine structure constant
α = e2/ℏc could eventually be explained by even more fundamental theories.

(b) About how many parameters would one need as input to Schrödinger’s equation to
describe materials and biology and such? Hint: There are 253 stable nuclear isotopes.

(c) Look up the Standard Model—our theory of electrons and light, quarks and gluons,
that also in principle can be solved to describe our Universe (apart from gravity). About
how many parameters are required for the Standard Model?

In high-energy physics, fewer constants are usually needed to describe the fundamental
theory than the low-energy, effective emergent theory—the fundamental theory is more
elegant and beautiful. In condensed matter theory, the fundamental theory is usually
less elegant and messier; the emergent theory has a kind of parameter compression, with
only a few combinations of microscopic parameters giving the governing parameters
(temperature, elastic constant, diffusion constant) for the emergent theory.

1The gyromagnetic ratio for each nucleus is also needed in a few situations where its coupling to magnetic
fields are important.
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Note that this is partly because in condensed matter theory we confine our attention
to one particular material at a time (crystals, liquids, superfluids). To describe all
materials in our world, and their interactions, would demand many parameters.

My high-energy friends sometimes view this from a different perspective. They note
that the methods we use to understand a new superfluid, or a topological insulator, are
quite similar to the ones they use to study the Universe. They admit a bit of envy—
that we get a new universe to study every time an experimentalist discovers another
material.

S1.2 Width of the height distribution.2 (Statistics) ⃝3
In this exercise we shall explore statistical methods of fitting models to data, in the
context of fitting a Gaussian to a distribution of measurements. We shall find that
maximum likelihood methods can be biased. We shall find that all sensible methods
converge as the number of measurements N gets large (just as thermodynamics can
ignore fluctuations for large numbers of particles), but a careful treatment of fluctu-
ations and probability distributions becomes important for small N (just as different
ensembles become distinguishable for small numbers of particles).

The Gaussian distribution, known in statistics as the normal distribution

N (x|µ, σ2) =
1√
2πσ2

e−(x−µ)2/(2σ2) (S1.1)

is a remarkably good approximation for many properties. The heights of men or women
in a given country, or the grades on an exam in a large class, will often have a his-
togram that is well described by a normal distribution.3 If we know the heights xn of a
sample with N people, we can write the likelihood that they were drawn from a normal
distribution with mean µ and variance σ2 as the product

P ({xn}|µ, σ) =
N∏

n=1

N (xn|µ, σ2). (S1.2)

We first introduce the concept of sufficient statistics. Our likelihood (eqn S1.2) does
not depend independently on each of the N heights xn. What do we need to know
about the sample to predict the likelihood?

(a) Write P ({xn}|µ, σ) in eqn S1.2 as a formula depending on the data {xn} only
through N , x = (1/N)

∑
n xn and S =

∑
n(xn − x)2.

Given the model of independent normal distributions, its likelihood is a formula de-
pending only on4 x and S, the sufficient statistics for our Gaussian model.

2This exercise was developed in collaboration with Colin Clement.
3This is likely because one’s height is determined by the additive effects of many roughly uncorrelated

genes and life experiences; the central limit theorem would then imply a Gaussian distribution (Chapter 2
and Exercise 12.11).

4In this exercise we shall use X denote a quantity averaged over a single sample of N people, and ⟨X⟩samp

denote a quantity also averaged over many samples.
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Now, suppose we have a small sample and wish to estimate the mean and the standard
deviation of the normal distribution.5 Maximum likelihood is a common method for
estimating model parameters; the estimates (µML, σML) are given by the peak of the
probability distribution P .

(b) Show that P ({xn}|µML, σML) takes its maximum value at

µML =

∑
n xn

N
= x

σML =

√∑
n

(xn − x)2/N =
√
S/N.

(S1.3)

(Hint: It is easier to maximize the log likelihood; P (θ) and log(P (θ)) are maximized
at the same point θML.)

If we draw samples of size N from a distribution of known mean µ0 and standard
deviation σ0, how do the maximum likelihood estimates differ from the actual values?
For the limiting case N = 1, the various maximum likelihood estimates for the heights
vary from sample to sample (with probability distribution N (x|µ, σ2), since the best
estimate of the height is the sampled one). Because the average value ⟨µML⟩samp over
many samples gives the correct mean, we say that µML is unbiased. The maximum
likelihood estimate for σ2

ML, however, is biased. Again, for the extreme example N = 1,
σ2
ML = 0 for every sample!

(c) Assume the entire population is drawn from some (perhaps non-Gaussian) distribu-
tion of variance ⟨x2⟩samp = σ2

0. For simplicity, let the mean of the population be zero.
Show that

〈
σ2
ML

〉
samp

= (1/N)

〈
N∑

n=1

(xn − x)2

〉
samp

=
N − 1

N
σ2
0. (S1.4)

that the variance for a group of N people is on average smaller than the variance of
the population distribution by a factor (N − 1)/N . (Hint: x = (1/N)

∑
n xn is not

necessarily zero. Expand it out and use the fact that xm and xn are uncorrelated.)

The maximum likelihood estimate for the variance is biased on average toward smaller
values. Thus we are taught, when estimating the standard deviation of a distribution6

from N measurements, to divide by
√
N − 1:

σ2
N−1 ≈

∑
n(xn − x)2

N − 1
. (S1.5)

5In physics, we usually estimate measurement errors separately from fitting our observations to theoretical
models, so each experimental data point di comes with its error σi. In statistics, the estimation of the
measurement error is often part of the modeling process, as in this exercise.

6Do not confuse this with the estimate of the error in the mean x.
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This correction N → N−1 is generalized to more complicated problems by considering
the number of independent degrees of freedom (here N − 1 degrees of freedom in the
vector xn−x of deviations from the mean). Alternatively, it is interesting that the bias
disappears if one does not estimate both σ2 and µ by maximizing the joint likelihood,
but integrating (or marginalizing) over µ and then finding the maximum likelihood for
σ2.

S1.3 Statistical mechanics and statistics.7 (Statistics) ⃝3
Consider the problem of fitting a theoretical model to experimentally determined data.
Let our model predict a time-dependent function yθ(t), where θ are the model pa-
rameters. Let there be N experimentally determined data points di at times ti with
errors of standard deviation σ. We assume that the experimental errors for the data
points are independent and Gaussian distributed, so that the probability that a given
model produced the observed data points (the probability P (D|θ) of the data given
the model) is

P (D|θ) =
N∏
i=1

1√
2πσ

e−(y
θ(ti)−di)

2
/2σ2

. (S1.6)

(a) True or false: This probability density corresponds to a Boltzmann distribution with
energy H and temperature T , with H =

∑N
i=1(y

θ(ti)− di)
2/2 and kBT = σ2.

There are two approaches to statistics. Among a family of models, the frequentists
will pick the parameters θ with the largest value of P (D|θ) (the maximum likelihood
estimate); the ensemble of best-fit models is then deduced from the range of likely input
data (deduced from the error bars σ). The Bayesians take a different point of view.
They argue that there is no reason to believe a priori that all models have the same
probability. (In model parameter space, there is no analogue of Liouville’s theorem,
Section 4.1.) Suppose the probability of the model (the prior) is P (θ). They use the
theorem

P (θ|D) = P (D|θ)P (θ)/P (D). (S1.7)

(b) Prove Bayes’ theorem (eqn S1.7) using the fact that P (A and B) = P (A|B)P (B)
(see note 39 on p. 113).

The Bayesians will often pick the maximum of P (θ|D) as their model for the experi-
mental data. But, given their perspective, it is even more natural to consider the entire
ensemble of models, weighted by P (θ|D), as the best description of the data. This
ensemble average then naturally provides error bars for the parameters as well as for
the predictions of various quantities.

Consider the problem of fitting a line to two data points. Suppose the experimental data
points are at t1 = 0, d1 = 1 and t2 = 1, d2 = 2, where both y-values have uncorrelated
Gaussian errors with standard deviation σ = 1/2, as assumed in eqn S1.6 above. Our
model M(m, b), with parameters θ = (m, b), is y(t) = mt+b. Our Bayesian statistician

7This exercise was developed with the help of Robert Weiss.



13

has prior knowledge that m and b both lie between zero and two, and assumes that the
probability density is otherwise uniform; P (m, b) = 1/4 for 0 < m < 2 and 0 < b < 2.

(c) Which of the contour plots shown accurately represent the probability distribution
P (θ|D) for the model, given the observed data? (The spacing between the contour lines
is arbitrary.)

(A) b

m

(B) b

m

(C) b

m

(D) b

m
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(E) b

m



Chapter 2

Sloppy models

Inverse problems in multiparameter scientific models are challenging. A systems biology
model may have tens to thousands of unknown reaction constants; a climate model may
have tens to hundreds; the cosmic microwave background radiation patterns (the echo of the
Big Bang) is described by ΛCDM (cold-dark-matter) models with six or more parameters.
The “inverse problem” is to extract the to extract these parameters from experimental or
simulation data. Unless you have a lot of high-quality experimental data (as we do for the
cosmic microwave background), it is typically impossible to solve the inverse problem.

One ubiquitous problem is sloppiness—the parameters in the model are poorly constrained
by the data (the inverse problem is ill-posed). In this book, we shall explore sloppiness in
parameter space, the model manifold, and its hyperribbon structure in two different contexts.
In the first few chapters, we shall focus on nonlinear least-squares models. Consider a model
yθ(t) depending onN parameters θ = {θ1, . . . , θN}, making predictions aboutM experiments
under conditions given by one or more control variables ti, with measurements di(ti) with
standard deviations σi. Our least-squares models presume all the errors have Gaussian errors,
so the probability we predict for the observed data given our model is

ρθ(d) =
M∏
i=1

1√
2π

exp(−(yθ(ti)− di)
2/2σ2

i ) =
1

(2πσ2)M/2
exp(−C(θ,d, t)), (2.1)

where the cost (called χ2 in statistics1 ) is

C(θ,d, t) =
M∑
i=1

(yθ(ti)− di)
2

2σ2
. (2.2)

where for simplicity we take all the data uncertainties to be equal. Here yθ is a nonlinear
function, and the cost is a sum of squares, and the best fit is where the cost is smallest, hence
the name nonlinear least-squares (NLLS). In later chapters, we shall consider probabilistic

1Up to a possible factor of two?

15
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models that cannot be written as a sum of squares, such as the Ising model and the ΛCDM
model mentioned above.

Two important quantities that will be central to our future discussion. First, the Jacobian
of the model predictions

Jiα = ∂y(ti)/∂θα (2.3)

linearizes the map from parameter space θ to prediction space y. It is the skewness of this
map that embodies the sloppiness in parameter space, and the hierarchy of widths for the
model manifold in Chapter 3.

Second, expanding the cost up to quadratic order in the distance to the best fit, we get the
cost Hessian

Hαβ =
∂2C

∂θα∂θβ
. (2.4)

θ2

θ

1σ

1

Fig. 2.1 Errors in estimating parameters. In a sloppy model, each parameter can be
important and yet all parameters can be challenging to estimate from collective behavior.
Here we see for two eigenvalues of the cost Hessian, varying one parameter keeping another
fixed until a given cost allows much less variation than varying a parameter allowing the
others to compensate. (See Exercise S2.3.)

Exercise S2.3 discusses the role of the Hessian in estimating parameter sensitivity and pa-
rameter uncertainty, if the uncertainties in the parameters are small enough to ignore the
higher-order terms2 as illustrated in Fig. S2.5. How important is parameter θα to the behav-
ior? You find that the diagonal elements of H gives the variance (σ2

α)fixed = 1/Hαα allowed
in parameter α if all the other parameters are fixed at their best-fit values. How uncertain is
the value of parameter θα, given the uncertainties in the data? You find that their variance
is given by the diagonal elements of the inverse of the Hessian, (σ2

α)collective = (H−1)αα.

We usually discuss sloppiness in parameter space in terms of the eigenvalues and eigenvectors
of the cost Hessian H. Eigenvectors of H with large eigenvalues correspond to stiff directions:
parameter combinations that are well constrained by the data. Eigenvectors of H with
small eigenvalues are poorly constrained by the data. The striking result, confirmed in

2We shall see, however, that the sloppy directions will almost always violate this assumption, often allowing
variations all the way to infinity for most parameter combinations.
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models across many fields of physics, science, and engineering, is that the logarithms of
the eigenvalues of H are roughly equally spaced. The eigenvalues are often a factor of
three or more apart, and with 48 parameters (in our original model [3, 4]), 350 is a huge
range. This implies that only a few stiff parameter combinations realistically matter for
model behavior: a central result that is connected to the success of simpler models. It
furthermore implies that most eigenvector parameter combinations have a huge uncertainty,
which typically translates into large uncertainties in all the model parameters. The inverse
problem, working backward from the behavior to find the behavior, is ill-posed. But, since the
sloppy parameter combinations are not crucial for the behavior, the good fits, constraining
the stiff directions, can often be relied upon to make accurate predictions about the real
world.

One final note. The cost Hessian for NLLS models can be written in terms of derivatives of
the predictions y:

∂2C

∂θα∂θβ
=

∂2

∂θα∂θβ

(∑
i

(yi − di)
2/2σ2

)

= (1/σ2)
∂

∂θα

(∑
i

(yi − di)
∂yi
∂θβ

)

= (1/σ2)

(∑
i

∂yi
∂θα

∂yi
∂θβ

+
���������:?
(yi − di)

∂2yi
∂θα∂θβ

)
≈ (1/σ2)(JTJ)αβ,

(2.5)

where the second derivative term is often neglected, giving an approximate Hessian that is
often used.

There are practical reasons for this approximation. A good fit has yi ≈ di and makes it small.
The second derivatives are expensive to calculate. And the resulting Hamiltonian is positive
definite, which can be useful (especially in sloppy models, when so many of the directions
have near zero eigenvalue).

Fundamentally, this approximation becomes exact when the data is perfectly described by
the model. It is the quadratic approximation for the distance between points in behavior
space y as parameters are varied. Viewing θ as coordinates for the surface of predicted
behaviors, this will be the metric tensor gαβ = (1/σ2)(JTJ)αβ on the model manifold (see
eqn ??).

Exercises
Exercise S2.1, Sloppy exponentials, is the first of a series of exercises exploring the ill-
conditioned problem of extracting the decay parameters from sums of decaying exponen-
tials. Exercise S2.3 discusses several different topics (nonlinear fits, model manifolds, and
in particular derives the variance for one parameter when the others are fixed and when
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they are allowed also to fluctuate. Exercise S2.4 discusses the relation between the cost
Hessian in NLLS models, the Fisher information matrix (FIM) for probabilistic models, and
the Cramér-Rao bound on the difficulty of estimating parameters from experiments. Finally,
Exercises S2.5, S2.6, and S2.7 derive fascinating relations between the FIM and derivatives
of the free energy in statistical mechanics, and explicitly computes the model manifold of a
piston filled with ideal gas.

S2.1 Sloppy exponentials.3 (Information geometry, Statistics) ⃝2
The problem of extracting the decay rates from a sum of exponential decays is a fa-
mously difficult inverse problem, from the early days of radioactivity to modern sim-
ulations of lattice quantum chromodynamics [?]. In a series of exercises, we shall use
our information geometry ideas to study the simplest version of this problem: the sum
of N exponential decays:

yθ(t) = (1/N)
N∑

α=1

exp(−θαt). (S2.6)

We anticipate that it will be challenging to disentangle decay rates θ which are close
to one another, unless one has high-precision data over large ranges of time. All the
decay curves are smoothly monotonically decreasing, and one could imagine modeling
a sum of two decays with a single intermediate decay rate. You shall find in these
exercises that this simple model illustrates the behavior we have found widespread in
multiparameter models in physics, engineering, biology, and other fields.

In this first exercise, we presume we have perfect experimental data for the decay d(t)
at M points ti equally spread for t between 0 and 10, with separation ∆t = 10/M .
We shall be considering how well this data can be represented by other values of the
parameters θ, so our cost (eqn 2.2) is:

C(θ,θ[0]) =
M∑
i=1

(yθ(ti)− yθ[0](ti))
2 /2σ2 ≈

∫ ∞

0

1/2 (yθ(t)− yθ[0](t))
2 dt. (S2.7)

where for convenience (since our data is perfect) we set σ2 = 1/∆t. We shall use the
continuum approximation to evaluate the Hessian at the best fit.

To start, suppose d(t) has two decay rates θ[0] = [1, 2], so the data d(t) = 1/2(exp(−t) +
exp(−2t)).

(a) Write a function that returns yθ(t), and a function that computes the cost for
∆t = 0.01. Draw a contour plot of C in the square 0.5 < θα < 2.5, with contours at
C = {2−12, 2−11, . . . , 20}. Set the number of grid points per side to 40 (so ∆θ = 0.02)
to see the two minima.

3Hints for the computations can be found at the book website [17].
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The diagonal in this plot gives single exponential decays. How well does a single
exponential capture the behavior at θ[0]?

(b) Constraining θ1 = θ2, find the point of minimum cost θmin. Where is the point
on the contour plot? Compare the two curves yθ[0](t) and yθmin

(t), and also plot their
difference.

One can see from the contour plot that measuring the two rate constants separately
would be a challenge. This is because the two exponentials have similar shapes, so
increasing one decay rate and decreasing the other can almost perfectly compensate for
one another.

This clearly is not a deep truth for two exponentials. But the effect is hugely magnified
when we have many parameters. We can see this by computing the eigenvalues of the
cost Hessian.

(c) Analytically calculate the Jacobian Jtα = ∂yθ(t)/∂θα in the continuum approxima-
tion (eqn S2.7). Using the Jacobian, show that the Hessian for the cost evaluated at
the best fit is

Hαβ =
∂2C(θ,θ0)

∂θα∂θβ

∣∣∣∣
θ[0]

=
2

N2

1

(θα + θβ)3
. (S2.8)

(Hint: See the discussion below eqn 2.5.)

(d) Using your answer from part (c), write a routine to calculate the entire array H(θ).
Check it by examining the eigenvectors and eigenvalues for the N = 2 case of part (b).
What do you predict the ratio R = (long axis/short axis) to be, in terms of the two
eigenvalues λstiffer and λsloppier? Are the directions roughly in line with the eigenvectors?

(e) For a sum of seven exponentials, with θ[0] = [1, 2, 3, . . . , 7], construct the Hessian,
and find its eigenvalues. Are they sloppy (roughly equally spaced in log)? By roughly
what factor does each successive eigenvalue shrink?

This sloppiness makes it strikingly difficult to extract the parameter values from the
data.

(f) Argue that the number of measurements nmeasure needed to estimate a parameter
scales inversely with its variance (nmeasure ∼ 1/σ2). Given that the eigenvalues of the
Hessian give the variance along the various eigendirections, by what factor nsloppy/nstiff

is it harder to measure the parameters along the sloppy directions, for your sum of
seven exponentials?

(g) Given that the diagonal elements of the inverse cost Hessian, (H−1)αα are propor-
tional to the variance in parameter α for one sampling of the Gaussian given by the
cost, what are the variances in the seven parameters θ

[0]
α ?

S2.2 Sloppy monomials.4 (Statistics) ⃝3
The same function f(x) can be approximated in many ways. Indeed, the same function
can be fit in the same interval by the same type of function in several different ways! For

4Thanks to Joshua Waterfall, whose research is described here.
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example, in the interval [0, 1], the function sin(2πx) can be approximated (badly) by a
fifth-order Taylor expansion, a Chebyshev polynomial, or a least-squares (Legendre5 )
fit:

f(x) = sin(2πx)

fTaylor ≈ 0.000 + 6.283x+ 0.000x2 − 41.342x3

+ 0.000x4 + 81.605x5

fChebyshev ≈ 0.0066 + 5.652x+ 9.701x2 − 95.455x3

+ 133.48x4 − 53.39x5

fLegendre ≈ 0.016 + 5.410x+ 11.304x2 − 99.637x3

+ 138.15x4 − 55.26x5

It is not a surprise that the best fit polynomial differs from the Taylor expansion, since
the latter is not a good approximation. But it is a surprise that the last two polynomials
are so different. The maximum error for Legendre is less than 0.02, and for Chebyshev
is less than 0.01, even though the two polynomials differ by

Chebyshev − Legendre = (S2.9)

− 0.0094 + 0.242x− 1.603x2

+ 4.182x3 − 4.67x4 + 1.87x5

a polynomial with coefficients two hundred times larger than the maximum difference!

(a) Plot f(x), fLegendre, and fChebyshev(x) between zero and one on the same graph. Plot
f(x)−fLegendre and f(x)−fChebyshev(x) on the same graph with the same range. The first
minimizes the squared difference on [0, 1] (eqn S2.10), but it has large errors near the
edges. If you were writing a routine to use for calculating sin(2πx) to machine precision
in this range, would it be better to use the Legendre or the Chebyshev approximation?
Now plot Plot fChebyshev(x)−fLegendre in the range −1, 2. Does it indeed get much flatter
than you would expect given the coefficients?

This flexibility in the coefficients of the polynomial expansion is remarkable. We can
study it by considering the dependence of the quality of the fit on the parameters.
Least-squares (Legendre) fits minimize a cost C, the integral of the squared difference
between the polynomial and the function:

C = (1/2)

∫ 1

0

(f(x)− yθ(x))
2 dx,

yθ(x) =
N−1∑
α=0

θαx
α

(S2.10)

5The orthogonal polynomials used for least-squares fits on [-1,1] are the Legendre polynomials, assuming
continuous data points. Were we using orthogonal polynomials for this exercise, we would need to shift them
for use in [0,1].
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How quickly does this cost increase as we move the N parameters θα away from their
best-fit values? Varying any one monomial coefficient will of course make the fit bad.
But apparently certain coordinated changes of coefficients do not cost much—for ex-
ample, the difference between least-squares and Chebyshev fits given in eqn S2.9.

How should we explore the dependence in arbitrary directions in parameter space? We
can use the eigenvalues of the Hessian to see how sensitive the fit is to moves along the
various eigenvectors. . .

(b) Note that the first derivative of the cost C is zero at the best fit. Analytically (paper
and pencil) show that the Hessian second derivative of the cost in eqn S2.10 is

Hαβ =
∂2C

∂θα∂θβ
=

1

α + β + 1
. (S2.11)

This Hessian is the Hilbert matrix, famous for being ill-conditioned (having a huge
range of eigenvalues). Tiny eigenvalues of H correspond to directions in polynomial
space where the fit does not change.

(c) Numerically calculate the eigenvalues of the 6×6 Hessian for fifth-degree polynomial
fits. Do they indeed span a large range? How big is the condition number (the ratio
of the largest to the smallest eigenvalue)? Are the ratios all approximately equal (a
characteristic of sloppy models)?

Notice from Eqn S2.11 that the dependence of the polynomial fit on the monomial co-
efficients is independent of the function f(x) being fitted. We can thus vividly illustrate
the sloppiness of polynomial fits by considering fits to the zero function f(x) ≡ 0. A
polynomial given by an eigenvector of the Hilbert matrix with small eigenvalue must
stay close to zero everywhere in the range [0, 1]. Let us check this.

(d) Calculate the eigenvector corresponding to the smallest eigenvalue of H, checking to
make sure its norm is one (so the coefficients are of order one). Note that the elements
of this vector are the coefficients of a polynomial pertubation δf(x) that changes the
cost the smallest amount for a unit vector θ. What is that polynomial? Plot the corre-
sponding polynomial in the range [0, 1]: does it stay small everywhere in the interval?

Especially for larger M , the monomial coefficients of the best fit to a function become
sloppy—they can vary over large ranges without damaging the fit, if the other coeffi-
cients are allowed to compensate. Only a few combinations of coefficients (those of the
largest Hessian eigenvalues) are well determined. This turns out to be a fundamental
property that is shared with many other multiparameter fitting problems. Many dif-
ferent terms are used to describe this property. The fits are called ill-conditioned: the
parameters θn are not well constrained by the data. The inverse problem is challeng-
ing: one cannot practically extract the parameters from the behavior of the model. Or,
as our group describes it, the fit is sloppy: only a few directions in parameter space
(eigenvectors corresponding to the largest eigenvalues) are constrained by the data, and
there is a huge space of models (polynomials) varying along sloppy directions that all
serve well in describing the data.
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At root, the problem with polynomial fits is that all monomials xn have similar shapes
on [0, 1]: they all start flat near zero and bend upward. Thus they can be traded for one
another; the coefficient of x4 can be lowered without changing the fit if the coefficients
of x3 and x5 are suitably adjusted to compensate.

One should note that, were we change basis from the coefficients θn of the monomials
xn to the coefficients ℓn of the orthogonal (shifted Legendre) polynomials, the situation
completely changes. The Legendre polynomials are designed to be different in shape
(orthogonal), and hence cannot be traded for one another. Their coefficients ℓn are thus
well determined by the data, and indeed the Hessian for the cost C in terms of this new
basis is the identity matrix. This puzzled us for some time—is the sloppiness intrinsic,
or just a sign of a poor choice of variables. Later work, examining the predictions of
nonlinear models using information geometry, resolved this question: sloppiness is un-
der rather general conditions expected for the collective predictions of multiparameter
nonlinear models.

S2.3 Nonlinear fits. (Statistics, Information geometry) ⃝3

In this exercise, we briefly introduce some geometrical features of nonlinear model fits
to data. These fits involve unknown parameters θα, control parameters ti describing
different experimental conditions, experimental data di taken under these different con-
ditions, and a nonlinear function yi(θ) that makes a prediction for the data given values
for the parameters. As an example, we might fit a sum of two decaying exponentials
to (say) the decay of radiation from a mixture of radioactive elements with unknown
decay rates (see [21, 22] and Exercise S1.3.) Our model is

yθ(t) = exp(−θ1t) + exp(−θ2t). (S2.12)

Here the parameters θ = {θ1, θ2} are the decay rates, the control parameter is t the
time elapsed, and the data d = {di} are the counts from a Geiger counter. We shall
assume that the experimental data points {di ± σi} have independent measurement
errors with Gaussian distributions of standard deviation σi.

A

B

fit

0.5 1.0 1.5 2.0 2.5 3.0 3.5
t

0.5

1.0

1.5

y(t)

Fig. S2.2 Fitting a nonlinear function to data, here a sum of two exponentials to three
data points y(1/3) = 0.9 ± 0.5, y(1) = 0.5 ± 0.5, and y(2) = 0.4 ± 0.5. Fit A decays too
quickly and fit B too slowly, although both are within statistical errors.
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Fig. S2.3 Contours of constant cost C = χ2/2 in parameter space. Notice the symmetry
reflecting around θ1 = θ2. Notice also the narrow canyons—one can fit the data well with
θ2 = ∞ (a single exponential decaying from y(0) = 1), a point on the edge of the model
manifold.

A nonlinear least-squares fit varies the parameters to minimize a cost

C(θ) = χ2/2 =
∑
i

(yi(θ)− di)
2/2σ2

i . (S2.13)

The cost is half of what the statisticians call χ2 (pronounced “chi squared”).

Fig. S2.4 Nonlinear model predictions in data space. The curved surface represents the
model manifold—the surface of predictions in data space formed by varying the parameters
of our nonlinear model. (We rescale the axes by the associated error bars.) The upper dot
represents fit B. The dot at the lower right represents fit A, with the fuzzy sphere representing
the range of experimental predictions around the fit. The two other dots represent the data
and the best fit (the nearest point to the model manifold in data space). Note that the best
fit is nearly at an edge of the model manifold.

First, let us provide a few interpretations of the cost.
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(a) [i] Interpret C as half the squared distance in a data space (Fig. S2.4) which has one
coordinate per experimental measurement. What is the metric tensor gij in data space,
in terms of the error bars σi?

6 [ii] Suppose the experimental data points di have errors
that are distributed as independent Gaussians of standard deviation σi. How is our cost
related to the log-likelihood that the data would have arisen from our model? [iii] View
C as a Hamiltonian, and the likelihood P (d|θ) giving the probability of observing data
d in data space as being a Boltzmann distribution. What is the temperature T?

Statistical mechanics focuses on predicting the behavior (probability distribution in
phase space) for a Hamiltonian H(T, P, V,N) with known parameters. At fixed tem-
perature, the probability density is proportional to exp(−H/kBT ), where Liouville’s
theorem tells us how to measure phase-space volume. Statistics predicts the distribu-
tion of data points for a model y(θ) with parameters θ. The probability distribution
is proportional to exp(−C) per unit volume in data space, where the distance between
two points in data space is determined by the error bars on each data point.

Finding the distribution of data points for a given set of parameters in statistics is not
a challenge.

(b) Argue, for equal Gaussian measurement errors, that the predicted distribution of
data points for a given set of parameters θ is just a blurred, Gaussian sphere in data
space (as in the lower right corner of Fig. S2.4). For general σi, make an analogy with
the momentum distribution of classical particles with different masses to describe the
probability distribution.

θ2

θ

1σ

1

Fig. S2.5 Error estimates for fit parameters. Contours of constant cost C in parameter
space θ near the best fit, ignoring anharmonicity. The ellipse axes are ev = (1/6, 1) and
eh = (1,−1/6). The 1σ range of θ1 keeping θ2 fixed is the solid arrow. The total uncertainty
σ1 for θ1 includes fluctuations of θ2 (solid diagonal arrow), σ2

1 = Σ11 = (H−1)11 (long dashed
range).

Our job in nonlinear fitting is to estimate the probabilities of different choices of pa-
rameters given the experimental data. Surely we expect the true parameters to have a
large probability P (d|θ) of generating the experimental data—the true θ will be some-
where near the best fit θbest that minimizes the cost C = χ2. Let us assume that the
probability P (θ|d) of finding a set of parameters given the data is proportional to the
probability P (d|θ) that the model would have generated that data. (See Exercise S1.2
for a discussion of priors in Bayesian statistics.) Let us also assume that we are es-
timating the parameters well enough that we may approximate the cost by a Taylor

6The metric tensor gij on a Riemannian manifold gives the distance between nearby points. If the two
points have coordinates x and x+∆ and ∆ is small, then the squared distance is

∑
ij gij∆i∆j .
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expansion up to second order about the maximum likelihood. If θ = θbest+∆ for small
∆,

C(θ) ≈ Cbest + 1/2Hαβ∆α∆β, (S2.14)

where we shall call

Hαβ =
∂2C

∂θα∂θβ
(S2.15)

the cost Hessian.

(c) Which of the eigenvectors ev or eh in Fig. S2.5 corresponds to a stiff direction
(larger eigenvalue of H)? Which is sloppier? Verify that the probability distribution
of θ1 holding all other variables fixed is a normal distribution with variance H11 (short
horizontal dashed range).

It is more of a challenge to calculate the error in our estimate of θ1 allowing the other
variables to vary freely (long horizontal dashed range). The variance of the estimate
of a variable is given by the corresponding diagonal element of the covariance matrix
Σ = H−1, the inverse of the Hessian.

If P (θ) is approximately a multidimensional Gaussian, then the variance in θ1 is given
by

⟨∆2
1⟩ =

∫
∆2

1P (∆)d∆ (S2.16)

=

∫
∆2

1

Z
e−

1/2
∑

αβ ∆αHαβ∆βd∆,

where

Z =

∫
exp

(
−1/2

∑
αβ

∆αHαβ∆β

)
d∆. (S2.17)

is the normalization factor.

In statistical mechanics, a key method for calculating expectation values ⟨Xn⟩ in
a Boltzmann distributions is to add a source term λX to the Hamiltonian, shift-
ing the partition function to Z(λ) =

∑
exp(−(H + λX)/kBT ), with free energy

F (λ) = −kBT logZ. Then

dF

dλ

∣∣∣∣
λ=0

=
−kBT

Z

dZ

dλ

∣∣∣∣
λ=0

=
����−kBT

Z

∫
X

����−kBT
e−H/kBT

= ⟨X⟩

(S2.18)
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and

d2F

dλ2

∣∣∣∣
λ=0

=
kBT

Z2

(
dZ

dλ

)2
∣∣∣∣∣
λ=0

− kBT

Z

d2Z

dλ2

∣∣∣∣
λ=0

=
⟨X⟩2

kBT
− kBT

Z

∫
X2

(kBT )2
e−H/kBT

=
⟨X2⟩ − ⟨X⟩2

−kBT
(S2.19)

=

〈
(X − ⟨X⟩)2

〉
−kBT

We can use this method to calculate ⟨∆2
1⟩.

(d) Add the source term λ ·∆ = λ∆1 to our cost, where λT = (λ, 0, 0, . . . ) is λ times
a unit vector in the shared θ1 and ∆1 direction, so

Z(λ) =

∫
e−

1/2 ∆TH∆−λ·∆d∆. (S2.20)

Complete the square, and show that Z(λ) = exp(1/2λ
2Σ11)Z(0). Use eqn S2.19 to show

that ⟨∆2
1⟩ = Σ11.

There is a commonly used approximation to the cost Hessian that has important geo-
metrical significance.

(e) [i] Write the cost Hessian in eqn S2.13 in terms of first and second derivatives of
yi(θ). [ii] If we take the cost Hessian at a point where d = y(θ) on the model manifold,
show that Hαβ =

∑
i(∂yi/∂θα)(∂yi/∂θβ) = (JTJ)αβ, where Jiα = (1/σi)∂yi/∂θα is

the Jacobian. [iii] Show that the squared distance in data space between two model
predictions y(θ) and y(θ+∆) is given for small ∆ by the metric tensor gαβ = (JTJ)αβ.

gαβ = (JTJ)αβ = JiαJiβ is the induced metric on the model manifold, inherited from the
embedding data space metric gij of part (a). g = JTJ is called the Fisher information
matrix in the statistics community.

S2.4 Fisher information and Cramér–Rao.7 (Statistics, Mathematics, Information ge-
ometry) ⃝4
Here we explore the geometry of the space of probability distributions. When one
changes the external conditions of a system a small amount, how much does the en-
semble of predicted states change? What is the metric in probability space? Can we
predict how easy it is to detect a change in external parameters by doing experiments
on the resulting distribution of states? The metric we find will be the Fisher infor-
mation matrix (FIM). The Cramér–Rao bound will use the FIM to provide a rigorous
limit on the precision of any (unbiased) measurement of parameter values.

In both statistical mechanics and statistics, our models generate probability distribu-
tions P (x|θ) for behaviors x given parameters θ.

7This exercise was developed in collaboration with Colin Clement and Katherine Quinn.
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• A crooked gambler’s loaded die, where the state space is comprised of discrete
rolls x ∈ {1, 2, . . . , 6} with probabilities θ = {p1, . . . , p5}, with p6 = 1−

∑5
j=1 θj.

• The probability density that a system with a HamiltonianH(θ) with θ = (T, P,N)
giving the temperature, pressure, and number of particles, will have a probability
density P (x|θ) = exp(−H/kBT )/Z in phase space (Chapter 3, Exercise S2.7).

• The height of women in the US, x = {h} has a probability distribution well
described by a normal (or Gaussian) distribution P (x|θ) = 1/

√
2πσ2 exp(−(x −

µ)2/2σ2) with mean and standard deviation θ = (µ, σ) (Exercise S1.2).

• A least squares model yi(θ) for N data points di ± σ with independent, normally
distributed measurement errors predicts a likelihood for finding a value x = {xi}
of the data {di} given by

P (x|θ) = e−
∑

i(yi(θ)−xi)
2/2σ2

(2πσ2)N/2
. (S2.21)

(Think of the theory curves you fit to data in many experimental labs courses.)

How “distant” is a loaded die is from a fair one? How “far apart” are the probability
distributions of particles in phase space for two small system at different temperatures
and pressures? How hard would it be to distinguish a group of US women from a group
of Pakistani women, if you only knew their heights?

We start with the least-squares model.

(a) How big is the probability density that a least-squares model with true parameters
θ would give experimental results implying a different set of parameters ϕ? Show that
it depends only on the distance between the vectors |y(θ) − y(ϕ)| in the space of pre-
dictions. Thus the predictions of least-squares models form a natural manifold in a
behavior space, with a coordinate system given by the parameters. The point on the
manifold corresponding to parameters θ is y(θ)/σ given by model predictions rescaled
by their error bars, y(θ)/σ.

Remember that the metric tensor gαβ gives the distance on the manifold between two
nearby points. The squared distance between points with coordinates θ and θ + ϵ∆ is
ϵ2
∑

αβ gαβ∆α∆β.

(b) Show that the least-squares metric is gαβ = (JTJ)αβ/σ
2, where the Jacobian Jiα =

∂yi/∂θα.

For general probability distributions, the natural metric describing the distance between
two nearby distributions P (x|θ) and Q = P (x|θ + ϵ∆) is given by the FIM:

gαβ(θ) = −
〈
∂2logP (x|θ)

∂θα∂θβ

〉
x

(S2.22)

Are the distances between least-squares models we intuited in parts (a) and (b) com-
patible with the the FIM?
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(c) Show for a least-squares model that eqn 3.2 is the same as the metric we derived in
part (b). (Hint: For a Gaussian distribution exp((x− µ)2/(2σ2))/

√
2πσ2, ⟨x⟩ = µ.)

If we have experimental data with errors, how well can we estimate the parameters in
our theoretical model, given a fit? As in part (a), now for general probabilistic models,
how big is the probability density that an experiment with true parameters θ would
give results perfectly corresponding to a nearby set of parameters θ + ϵ∆?

(d) Take the Taylor series of logP (θ + ϵ∆) to second order in ϵ. Exponentiate this to
estimate how much the probability of measuring values corresponding to the predictions
at θ + ϵ∆ fall off compared to P (θ). Thus to linear order the FIM gαβ estimates the
range of likely measured parameters around the true parameters of the model.

The Cramér–Rao bound shows that this estimate is related to a rigorous bound. In
particular, errors in a multiparameter fit are usually described by a covariance matrix
Σ, where the variance of the likely values of parameter θα is given by Σαα, and where
Σαβ gives the correlations between two parameters θα and θβ. One can show within
our quadratic approximation of part (d) that the covariance matrix is the inverse of
the FIM Σαβ = (g−1)αβ. The Cramér–Rao bound roughly tells us that no experiment
can do better than this at estimating parameters. In particular, it tells us that the
error range of the individual parameters from a sampling of a probability distribution
is bounded below by the corresponding element of the inverse of the FIM

Σαα ≥ (g−1)αα. (S2.23)

(if the estimator is unbiased, see Exercise S1.2). This is another justification for using
the FIM as our natural distance metric in probability space.

In Exercise S6.4, we shall examine global measures of distance or distinguishability
between potentially quite different probability distributions. There we shall show that
these measures all reduce to the FIM to lowest order in the change in parameters.
In Exercises S6.5, S2.6, and S2.7, we shall show that the FIM for a Gibbs ensemble
as a function of temperature and pressure can be written in terms of thermodynamic
quantities like compressibility and specific heat. There we use the FIM to estimate
the path length in probability space, in order to estimate the entropy cost of controlling
systems like the Carnot cycle.

S2.5 Gibbs for pistons. (Thermodynamics) ⃝4
The degrees of freedom in a piston are X = {P,Q, V }, where P and Q are the 3N
positions and momenta of the particles, and V is the current volume of the piston. The
Gibbs ensemble for a piston is the probability density

ρ = (1/Γ) exp(−βH(P,Q)− βPV ). (S2.24)

Here Γ is the partition function for the Gibbs ensemble, normalizing the distribution
to one.
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Let our piston be filled with an ideal gas of particles of mass m. What is the partition
function Z(V, β) for the canonical ensemble? (Be sure to include the Gibbs factor N !;
the quantum phase-space refinements are optional.) Show that the partition function
for the Gibbs ensemble is

Γ(P, β) = (2πm/β)3N/2(βP )−(N+1), (S2.25)

Show that the joint probability density for finding the N particles with 3N dimensional
momenta P, the piston with volume V , and the 3N dimensional positions Q inside V
(eqn S2.24), is

ρGibbs(P,Q, V |P, β) = (1/Γ(P, β))e−βP2/2m−βPV . (S2.26)

S2.6 Pistons in probability space.8 (Mathematics, Information geometry) ⃝4
Fig. 5.3 shows the Carnot cycle as a path in the P–V space of pressure and volume—
parameters varied from the outside. One could draw a similar diagram in the space
of pressure and temperature, or volume and temperature. Here we shall explore how
to describe the path in the space of probability distributions. In the process, we shall
compute the model manifold of the ideal gas, and show that it is a two-dimensional
plane.

As discussed in Exercise S2.4, there is a natural distance, or metric, in the space of
probability distributions:

gµν = −
〈
∂2 log(ρ)

∂θµ∂θν

〉
, (S2.27)

the Fisher information metric. So, a system in the Gibbs ensemble is described in terms
of two parameters, usually P and T . We shall instead use the “natural” parameters
θ1 = p = βP and θ2 = β, where β = 1/kBT (see Exercise S2.7). The squared distance in
probability space between two systems with tiny changes in pressure and temperature
is then

d2(ρ(X|θ), ρ(X|θ + dθ)) = gµνdθµdθν . (S2.28)

(a) Compute g
(p,β)
µν = −⟨∂2 log(ρ)/∂θµ∂θν⟩ using eqn S2.26 from Exercise S2.5.

The metric tensor g(p,β) for the Gibbs ensemble of the piston tells us the distance
in probability space between neighboring pressures and temperatures. What kind of
surface (the model manifold) is formed by this two-parameter family of probability
distributions? Does it have an intrinsic curvature?

(b) Show that one can turn the metric tensor into the identity g
(x,y)
µν = δµν by a coor-

dinate transformation (p, β) → (x = A log(p), y = B log(β)). What are the necessary
scale factors A and B?

8This exercise was developed in collaboration with Ben Machta, Archishman Raju, Colin Clement, and
Katherine Quinn
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Hence the model manifold of the piston in the Gibbs ensemble is a plane! We can draw
our control paths in the (x, y) plane. We label the four steps of the Carnot cycle as in
Fig. 5.3.

(c) Draw the Carnot cycle path in as a parameterized curve in (x, y), with Pa = 1,
Pb = 0.5, T1 = 1 and T2 = 0.8, for N = 1. (Hint: eqn 5.8 will be helpful in finding the
adiabatic parts of the path p(β).) Is the length of the expansion at fixed pressure the
same as you calculated in Exercise S6.5?

S2.7 FIM for Gibbs.9 (Mathematics, Thermodynamics, Information geometry) ⃝4
In this exercise, we study the geometry in the space of probability distributions defined
by the Gibbs ensemble10 of a general equilibrium system. We compute the Fisher
Information Metric (FIM, Exercises S2.4 and S2.6)

gµν = −
〈
∂2 log(ρ)

∂θµ∂θν

〉
, (S2.29)

of the Gibbs phase space ensemble ρ(P,Q) in terms of thermodynamic properties of
the system.

In Exercise S2.6 we calculated gµν for the ideal gas, using the “natural” variables
θ1 = p = βP and θ2 = β, rather than P and T . Why are these coordinates special?
The log of the Gibbs probability distribution for an arbitrary interacting collection of
particles with Hamiltonian H (eqn S2.24) is

log(ρ) = −βH(P,Q)− βPV − log Γ

= −βH(P,Q)− pV − log Γ.
(S2.30)

This is the logarithm of the partition function Γ plus terms linear in p = βP and
β.11 So the second derivatives with respect to p and β only involve log(Γ). We know
that the Gibbs free energy G(p, β) = −kBT log(Γ) = −(1/β) log(Γ(p, β)), so log(Γ) =
−βG(p, β). The first derivatives of the Gibbs free energy dG = −SdT + V dP + µdN
are related to things like volume and entropy and chemical potential; our metric is
given by the second derivatives (compressibility, specific heat, . . . )

(a) For a collection of particles interacting with Hamiltonian H, relate the four terms

g
(p,β)
µν in terms of physical quantities given by the second derivatives of G. Write
your answer in terms of N , p, β, the particle density ρ = N/⟨V ⟩, the isothermal

9This exercise was developed in collaboration with Ben Machta, Archishman Raju, Colin Clement, and
Katherine Quinn

10The Fisher information distance is badly defined except for changes in intensive quantities. In a mi-
crocanonical ensemble, for example, the energy E is constant and so the derivative ∂ρ/∂E would be the
derivative of a δ function. So we study pistons varying P and β = 1/kBT , rather than at fixed volume or
energy.

11In statistics, log probability distributions which depend on parameters in this linear fashion are called
exponential families. Many common distributions, including lots of statistical mechanical models like ours,
are exponential families.
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compressibility κ = −(1/⟨V ⟩)(∂⟨V ⟩/∂P )|T , the thermal expansion coefficient α =
(1/⟨V ⟩)(∂⟨V ⟩/∂T )|P , and the specific heat per particle at constant pressure, cP =
(T/N)(∂S/∂T )|P . (Hint: G(P, T ) = G(p/β, 1/β). Your answer will be a bit less
complicated if you pull out an overall factor of N/(ρβ2).)

The metric tensor for a general Hamiltonian is a bit simpler in the more usual coordi-
nates (P, β) or (P, T ).

(b) Show that

g(P,β) = N

(
βκ/ρ α/βρ
α/βρ cP/β

2

)
and

g(P,T) = N

(
κ/ρT −α/ρT
−α/ρT cP/T

2

)
.

(c) Calculate g(p,β) for the ideal gas using your answer from part (a). Compare with
your results calculating g(p,β) directly from the probability distribution in Exercise S2.6.
Is the difference significant for macroscopic systems? (Hint: If you use G = A + PV
directly from eqn 6.24, remember that the thermal de Broglie wavelength λ depends
on temperature.)

The standard formulas for an ideal gas do not include the piston wall as a degree of free-
dom, so part (c) has one fewer positional degree of freedom than in Exercise S2.6. That
is, the macroscopic calculation neglects the entropic contribution of the fluctuations in
volume (the position of the piston inside the cylinder).
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Chapter 3

Model manifolds and hyperribbons

Information geometry studies the shape and topology of the model manifold (a) to find bet-
ter algorithms for fitting experimental data [?], (b) to understand why complex microscopic
models often exhibit simple emergent behavior [?], and (c) to derive reduced, effective models
that describe the experiments just as well with fewer parameters [?]. It has been applied to
complex models in many fields [?]. Visualizations of the model manifold are useful because
they often are well approximated with low-dimensional projections, like principal component
analysis (PCA). Unlike other low-dimensional representations, PCA preserves the pairwise
distances between the prediction vectors y. Three-dimensional visualizations are useful be-
cause many models are sloppy; most of their behavior is governed by a few combinations of
parameters. Their allowed predictions form the model manifold: for N parameters and M
predictions they form N -dimensional volumes in the M -dimensional behavior space. Sloppy
systems have model manifolds that form hyperribbons – volumes that are longer than they
are wide, wider than they are thick, . . . hierarchically thinner and thinner N − 1 times.

3.1 The Jacobian and the metric tensor gαβ.

So far, we have been characterizing sloppy models by their behavior near one point in param-
eter space. We have mostly discussed the eigenvalues of the Hessian Hαβ = ∂α∂βC(θ). We
have also discussed the Jacobian Jiα = ∂y(xi)/∂θα, which describes the variation in behavior
as parameters are changed. The eigenvalues of the Hessian for sloppy models show a hierar-
chy of scales (Fig. 1.1) in models drawn from a variety of scientific disciplines. This Hessian
is usually well approximated using the Jacobian H ≈ JTJ . The hierarchy of eigenvalues of
the Hessian is reflected in the skewness of the Jacobian (Fig. 3.1).
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Θ

Ji

Parameters Behaviors

y  (x)

α

Fig. 3.1 Skewness and sloppiness. The mapping yθ from parameter space to behavior
space in sloppy models is extremely skewed. Many parameter directions lead to similar
changes in behavior. This skewness, in a small region around one point, is reflected in the
Jacobian Jiα = ∂y(xi)/∂θα. J takes a cube formed by the parameter axes to a volume in
parameter space that gets squeezed into a long, thin volume that gets thinner and thinner
as more parameters are added. In nonlinear models, it is this skewness that leads to the
hyperribbon structure of the model manifold.

In this section, we shall move our focus from parameter space to behavior space. Recall that,
for least-squares models, the model manifold is the surface y(θ) in behavior space swept out
as the parameters θ are varied through all allowed values. The parameters can be viewed as
coordinates on the model manifold.

The metric tensor gαβ tells us how far apart two predictions are when the parameters are
changes by a small distance θ′ − θ = δ: |y(θ′) − y(θ)|2 = δαδβgαβ. For our NLLS model,
this is written in terms of the Jacobian Jiα = ∂yi/∂θα:

∑
i

(yi(θ
′)− yi(θ))

2 =
∑
i

(∑
α

δα
∂yi
∂δα

)2

=
∑
i

(∑
α

δα
∂yi
∂δα

)(∑
β

δβ
∂yi
∂δβ

)
=
∑
αβ

δαδβJ
T
αiJiβ,

(3.1)

so gαβ = (JTJ)αβ is our metric. Remember from eqn 2.5 that this is also our approximation
for the Hessian for NLLS models. The skewness of the linearized mapping J from parameter
space into behavior space (Fig. 3.1) gives the large range of eigenvalues for the cost Hessian,
and hence the sloppiness we observe. It will also yield the flat, hyperribbon structure of the
model manifold.
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3.2 Model manifolds and behavior space.

The easy case is a model that predicts scalar experimental results with error bars. If a
model with N parameters θα predicts M results yi(θ) with standard deviation σi, and σi is
independent of the parameters, the model manifold is an N -dimensional surface swept out
in RM (Fig. 3.2).

Fig. 3.2 Model manifold for a least-squares muon decay model. The 2D surface of
predictions as two muon decay rates (θ1, θ2) are varied to fit experimental measurements fi
at three time-points ti (from Teoh et al. [19]). One can think of the model manifold as the
surface of predictions in RM at particular values of the the experimental control variables. (So
here (a) shows the model manifold for the three times t1, t2, and t3, and (b) shows the model
manifolds ignoring the third time.) Or, one can think of the model manifold as a surface in
the infinite-dimensional space of predictions for all possible experimental measurements. (So
here (a) and (b) show projections of the model manifold onto three of the axes.)

We are interested not in just any visualization, but in a visualization that separates points
generated by parameters θ and θ′ in a natural way that respects the experiment. This is easy
for NLLS models, where, because the errors σi on the individual data points are normally
distributed and independent of parameters, the distances (measured in units of the σi) form
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a natural metric in behavior space which immediately gives us the distances between points
on the model manifold.

3.3 Sloppiness in physics and the Fisher Information

Metric

What about more general models? In this section, we shall discuss the natural metric tensor
for any model that predicts a probability distribution of possible observations: the Fisher
Information Metric (FIM). This metric properly treats non-Gaussian noise and error distri-
butions, and systems whose errors depend on parameters. It covers models like the Ising
model for magnets and the ΛCDM model for the microwave background radiation, which
predict the probabilities of various snapshots of complex interacting and evolving systems.
The eigenvalues of this metric tensor for sloppy probabilistic models also forms a hierarchy,
spanning many decades. We shall return to studying the model manifolds for probabilistic
models in Chapter 6. There we will search for isometric embeddings of model predictions,
which preserve the local distances between predictions on the model manifold given by the
FIM.

Recall that the natural metric in the space of probability distributions is the Fisher Informa-
tion matrix,

gαβ = −
〈
∂2 log ρ(x)

∂θα∂θβ

〉
= −

∫
dxρ(x)

∂2 log ρ(x)

∂θα∂θβ
.

(3.2)

In Exercise S6.1, we give a rationalization for the FIM as the natural metric in parameter
space, by noting that the space of probability distributions is naturally viewed as the positive
“octant” of a hypersphere.

Exercises

S3.1 Plotting the model manifold.1 (Information geometry, Statistics) ⃝3
In this exercise, we shall use our N parameter model of decaying exponentials explore
ways of visualizing the resulting behavior. Remember eqn S2.6 from Exercise S2.1,
yθ(t) = (1/N)

∑N
α=1 exp(−θαt).

One way of visualizing the behavior space is to pick two or three quantities of interest,
and explore how they vary with one another. This is a projection of the model manifold
onto the three coordinate axes of interest.

1Hints for the computations can be found at the book website [17].
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(a) Taking N = 2 different exponents, draw the projection of the the model manifold
onto the axes corresponding to t = {1/3, 1, 3}. (That is, do a 3D parametric plot of
{yθ(1/3), yθ(1), yθ(3)}, varying 0 < θ1 < ∞ and 0 < θ2 < ∞.) You’ll want some of
the θs to be small and some large. (I had a range ∼ (10−2–102, with equally spaced
points in log if on a grid). Identify the two values of θ for the three pointy endpoints.
What simpler model (with only one parameter) is associated with the three edges of the
manifold?

What happens when we take N exponentials? The model manifold will no longer be
a surface – it will fill an N -dimensional manifold, and its projection into 3D will also
fill a volume. We cannot expect to do this with a grid of points: 10 points in each
direction for N = 7 θs would be 107 curves. Let us choose random vectors to get an
idea of the shape.

(b) Select a large number of random vectors in the space of parameters 0 < θα < ∞.
Starting with N = 2, reproduce the model manifold you found in part (a). You’ll want
some of the θs to be small and some large to get to the edges: choose values with
probability ρ(θ) ∝ 1/θ in the same range you used in part (a). Try N = 7. Rotate the
3D plot to see how “thick” the model manifold is.

You should find a thin sheet with what appears to be pointy-tipped scallops along one
“edge”. For N = 1, there were three points on the manifold, including the two at the
ends of the edge.

(c) How many points do you observe for N = 7? From part (a), argue that the three
cuspy points for N = 2 correspond to values where y(t) is a constant except perhaps at
t = 0. Is the same (likely) true for N = 7?

The cusps in the model manifold are simpler models with no adjustable parameters!
We shall find in general that the edges, corners, and hyper-edges of the model manifold
form emergent, simpler models. In Exercise ??, we shall use noise to sample the edges
of the model manifold.

Using three predictions is not an exhaustive study for a complex model. Can we create
a 3D view of the entire behavior? In Fig. 6.2, we used principal component analysis
to rotate our 5000 dimensional stock price information so that the most important
few directions could be separated out and viewed. Let us apply principal component
analysis to our data. There are packaged routines you can use for this.

(d) Test your implementation of PCA. Generate random trajectories y(t) for pairs of
θs as in part (a), but now for 20 timepoints y(t) evenly spaced with t between zero and
ten. Find the first three principal components from these trajectories. You should get
a similar manifold (perhaps flipped), except rotated so that the longest axis is along the
first component and the narrowest axis is along the third component.

(e) Now generate a random set of trajectories with N = 7 for t ∈ (0, 10), and plot the
first three principal components. Do they appear to be thinning by roughly a constant
factor for each new component? Plot the next three components. Does the manifold
continue to get thinner?
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(e) Now generate a random set of trajectories with N = 7 for t ∈ (0, 10), and plot the
first three principal components. Do they appear to be thinning by roughly a constant
factor for each new component? Plot the next three components. Does the manifold
continue to get thinner?

The surface swept out by yθ(t) in the space of trajectories is the model manifold. You
have found that it forms a hyperribbon – a geometrical object that is longer than it is
wide, wider than it is thick, and so on for as many perpendicular directions as there are
parameters. In practice, most multiparameter models share this behavior [6, 20, 11],
and for NLLS models with certain smoothness conditions this hyperribbon behavior
can be rigorously proven [14, 21]. And, just as the edges and corners of our exponential
decay model correspond to models with fewer exponentials, so too the hyper-edges of
the hyperribbons for models in these other fields give rapidly converging approximate
models for systems with complex microscopic laws.

S3.2 Monomial hyperribbons.2 (Statistics) ⃝3
We saw in Exercise S2.2 that the monomial coefficients for polynomial fits to data are
ill-determined, and have sloppy eigenvalues for their Hessian. While linear fits with
unconstrained coefficients have an unbounded model manifold (an infinite hyperplane,
so not a hyperribbon), they allow arbitrarily large gradients in the resulting fit, which
are not usually expected in practice and often suppressed by nonlinearities in realistic
models (where parameters can often go to infinity in ways that keep the predictions
bounded).

Here we consider the model manifold for polynomials yθ(x) =
∑N−1

α=0 θαx
α with bounds

on the parameters θα. The Jacobian

Jmα =
∂yθ
∂θα

∣∣∣∣
xm

(S3.3)

can be viewed as mapping small vectors δ in parameter space onto vectors ∆y(x) in
prediction space, where x = {x1, . . . , xM} are the locations of the data points being fit.
That is, yθ+δ(xm) = yθ(xm) +

∑
α Jmαδα (see Fig. 3.1).

(a) Show (or note) that Jmα = xα
m.

Thus

J =

 1 x1 x2
1 ··· xN−1

1

1 x2 x2
2 ··· xN−1

2

...
...

...
...

...
1 xM x2

M ··· xN−1
M

 (S3.4)

is the famous Vandermonde matrix. If M = N , this matrix is square, and its de-
terminant is the ratio of the volume of the allowed parameters θ and the volume of
the resulting model manifold. The famous result is that this determinant is given by
det(J) =

∏
1≤i<j≤N(xj − xi). This can be seen by observing that det J obeys the rule

2This exercise embodies the results of Quinn, Wilber, et al. [14].
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that swapping rows of J swaps the sign of the determinant, that the determinant has
the correct net degree in the xi (the same degree N(N − 1)/2 as the product of the
diagonal entries), and then checking for the overall multiplicative constant.

Let us consider the constrained system where the monomial coefficients lie in a sphere∑
α

θ2α < N, (S3.5)

and consider fits over the unit interval x ∈ (0, 1). Each θ on average then has a variance
of order one, and we are considering the behavior over a distance of order one. This
bound corresponds to controlling the derivatives of the function at zero, since

θα = y
(α)
θ (0)/α! = (1/α!) ∂αyθ/∂x

α|x=0 = Rα (S3.6)

where R would correspond to a radius of convergence of the function according to a ratio
test. (Our assumption in eqn S3.5 that the monomial coefficients lie in a sphere can be
made to work by rescaling the length until R = 1.) Our general theorem for nonlinear
least-squares models [14] demands a stronger constraint on the functions f(x) – that
the sum of the squares of the mth derivatives be less than N for every x in the interval.
They also use the fact that polynomials have the biggest range of predictions given the
Taylor series bounds, so your calculation is reproducing much of the qualitative physics
of the rigorous proof.

If the typical distance between the points xi is ∆x, then the determinant det J is
∼ (∆x)N(N−1)/2, which becomes really, really tiny as N gets large and the minimal
spacing L/M gets small. As soon as the number of data points per radius of convergence
becomes larger than two, the volume of the model manifold gets progressively smaller.

(b) Taking M = 6 equally spaced points on [0, 1] and N = 6 parameters, numerically
check that the determinant of our Vandermonde matrix J is tiny.

Is this volume small because the the predictions are squeezed into a hyperribbon?
If the widths along the nth direction scale as wn = (∆x)n, then this would work,

since
∏N

n=1wn = (∆x)
∑N

n=1 n = (∆x)N(N−1)/2. But usually the number of predictions
M is larger than the number of parameters N , so J isn’t a square matrix. What
mathematical operation gives us the shape of the image of the unit sphere? Singular
value decompositions is a powerful generalization of eigenvector decomposition, and
precisely serves this purpose.

Singular value decomposition is not well studied in physics, where we usually care
about square matrices that are symmetric or Hermitian. See the excellent Wikipedia
article [23] on SVD. The theory says that any matrix of real numbers can be decomposed
into a product of three matrices:

J = UΣV T

Jiα = UijΣjβ(V
T )βα.

(S3.7)
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Here U is M×M , V is N×N , and Σ is M×N and diagonal (until the diagonal hits one
of the far sides of the rectangle). Here the columns of U and V (and hence the rows of
V T ) are an orthonomal basis for the behavior space and the parameter space, and are
called the left-singular vectors and the right-singular vectors of J, respectively. (This
makes UTU and V TV the M × M and N × N identity matrices: they are unitary.)
Assuming M > N , the first N basis vectors of U span the tangent to the model
manifold. The αth right singular vectors of V maps onto the αth left singular vector
of U after being stretched an amount given by σαα.

(c) Taking M = 11 equally spaced points and N = 6 parameters, dig up the appropriate
SVD routine and find U , Σ, and V for our our Vandermonde Jacobian J. The left
singular vectors of U are unit vectors on our sphere in parameter space. In behavior
space, our sphere becomes an ellipsoid, with axes along the right singular vectors. By
how much are the unit axes of our sphere of parameters being squashed in behavior
space? Is our hyperellipsoid model manifold roughly thinner by a constant factor for
each new parameter?

Finally, let us connect the skewness of J and its singular values Σαα with the Hessian
Hαβ = gαβ = (JTJ)αβ.

(d) Show analytically using the singular value decomposition that the eigenvalues of H
are the squares of the singular values of J . What are the eigenvectors, in terms of the
left and right singular vectors?



Chapter 4

Nonlinear fits: Challenges and
algorithms

Exercises
S4.1 No exercises yet
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Chapter 5

Model boundaries and simpler
emergent models

Exercises
S5.1 First-digit law and priors. (Statistics) ⃝p

2 4 6 8
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y

NIST constants: first non-zero digit
Probabilities
log10(1 + 1/d)

Fig. S5.1 Fraction of first digits for 354 fundamental physical constants. (2019 CODATA
internationally recommended values [1]).

Bayesian statistics, like statistical mechanics, incorporates known experimental results
into a probabilistic prediction for the behavior of the system in the future (see Ex-
ercise S1.3). In statistical mechanics, if we only know the energy of a system then
Liouville’s theorem tells us that all points in the energy shell are equally likely a priori.
In Bayesian statistics, they have no theorem like Liouville’s, so they need to assume
a prior. For example, if you want to estimate a time constant τ for a chemical reac-
tion (which can range from nanoseconds to years), you might want a prior Pτ (τ) that
gives equal weight to each decade: finding τ in the range (10−9, 10−8) seconds is equally
plausible as finding τ in the range (105, 106) seconds.
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Show that Pτ (τ) ∝ 1/τ has this reasonable property. Show that this choice also makes
the decay rates Γ = 1/τ have this same nice property: PΓ(Γ) ∝ 1/Γ. (Hint: If τ lies in
a small range ∆τ , then Γ will lie in a corresponding small range ∆Γ, so PΓ(Γ)|∆Γ| =
Pτ (τ)|∆τ |.) Show that this distribution predicts that the first non-zero decimal digit d
of τ will have probability log10(1+1/d) (Fig. S5.1). (Hint: Do it assuming τ lies in one
decade first.) Show your steps. (Note: Feel free to consult the extensive discussions
on the Web.)

Simon Newcomb, using a book of logarithms in 18811 discovered this by noticing that
the pages in the beginning (1.000001, 1.000002, . . . ) were dirtier than the ones at the
end (9.000001, 9.000002, . . . ). Frank Benford fleshed this out in 1938, showing that
areas of rivers, molecular weights of compounds, and physical constants like the proton
mass, Planck length, and Avogadro’s constant (Fig. S5.1) also obey this law.

S5.2 Bayesian priors.2 (Statistics) ⃝3
In this exercise, we shall explore an analogy between statistical mechanics and Bayesian
statistics. As in Exercise S1.2, we consider the problem of fitting a Gaussian probability
distribution to a collection of measurements. (See also Exercise S2.4 for an information-
geometry analysis of this same problem.)

Consider the population the heights of women in the United States. Several websites
quote a mean height of µ0 = 162 cm for US women, but neglect to mention the vari-
ance. We will assume µ = µ0 is known, and we would like to estimate the probability
distribution of the unknown standard deviation σ, given a single uncorrelated sample
of N women. We know

P ({xn}|σ) =
N∏

n=1

1√
2πσ2

e−(xn−µ0)2/(2σ2)

=
e−

∑N
n=1(xn−µ0)2/2σ2

√
2πσ2

N
(S5.1)

= (2πσ2)−N/2 exp
(
−SN/2σ

2
)
,

where the value SN =
∑N

n=1(xn − µ0)
2 provides sufficient statistics for estimating σ.

In statistical mechanics, we care not only about the average behavior, but the distri-
bution of behaviors. If our sample size is small, we should care not only about being
correct on average, but also what the distribution will be of the true answers given
the data we have. In our case, given the model P ({xn}|σ) with unknown parameter
(θ = (σ)), and knowing only one sample of N data points {xn}, what is the probability
that the standard deviation of the unknown distribution is in the range (σ, σ +∆)?

1Before calculators, people used printed books of logarithms, which allow one to multiply and divide
quickly.

2This exercise was developed in collaboration with Colin Clement.
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In Bayesian statistics, we estimate the probability of a given set of parameters θ given
data d by using Bayes’ theorem (see Exercise S1.3):

P (θ|d) = P (d|θ)P (θ)/P (d). (S5.2)

with P ({xn}|σ) from eqn S5.1. Here the probability of the data, P (d), is independent of
the parameters and basically acts to normalize P (θ|d) to one. The probability density
P (θ) is called the prior.

There is a close relationship between Bayesian statistics and statistical mechanics. The
unknown parameters are analogous to the degrees of freedom in a physical system (say,
momenta and positions of the particles). The probability density P (θ|d) is analogous
to the Boltzmann factor exp(−H/kBT )/Z of Chapter 6. The data d is analogous to
the known external conditions (energy, volume, pressure, . . . ). Statisticians do Monte
Carlo in parameter space (stochastic Bayesian analysis [15]) using the same techniques
we discuss in Chapter 8.

But what is the prior P (θ)? It represents knowledge you had about the parameters
before the data is taken, or perhaps about how parameters should be distributed, if no
measurements have yet been taken. In the statistical mechanics of classical particles
(Chapter 3), our presumption about the relative probability of different positions and
momenta is given by Liouville’s theorem—a uniform prior, weighting all regions of
phase space equally. (It is only after we know the temperature or the energy that high
momenta become less probable than low momenta.)

Uniform priors in Bayesian statistics seem unbiased. We shall compare several priors
of the form Pα(σ) ∼ σα.

There are three values for α of particular interest.

• α = 0, the uniform prior for σ where every interval (σ, σ +∆σ) is equally likely.

• A value for α, where every interval (v, v +∆v) in the variance σ2 is equally likely
(uniform prior for σ2).

• Jeffrey’s prior P (σ) = 1/σ, where every fractional change (σ, (1 +∆)σ) is equally
likely.

Suppose three competing investigators took each took a single sample of women, with
N = 4, N = 40, and N = 400, from a population with known mean µ0. Suppose for
simplicity that in each case their sample gave the population average3 SN = Nσ2

pop.

(a) Plot P0(σ|SN) versus σ/σpop for these three samples N = 4, 40, and 400, as-
suming uniform prior α = 0 for σ and using SN = Nσ2

pop The normalization (P (d)
in eqn S5.2) can be computed either numerically, or analytically in terms of Γ(z) =∫∞
0

xz−1 exp(−x)dx. How does the maximum likelihood σML, where P0(σML) is maxi-
mum, vary with N? Is it biased, compared to the naive estimate σpop? Finally, explain
why the curve appears so asymmetric for small N . Is the average σ for this probability

3The standard deviation of women’s heights in the US turns out to be about σpop = 6.9 cm.
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distribution biased? In what direction? (Hint: Is it more likely for a narrow Gaussian
to give a widely distributed sample of four points, or for a wide Gaussian to happen to
give a tight cluster of four points?)

So the bias in statistical estimates depends on whether you are interested in the mean
(average) or the mode (maximum likelihood). From a Bayesian perspective, choosing
any single number to represent the probability distribution of the quantity of interest
is perhaps misguided.

Note that the bias ⟨X⟩samp we found in Exercise S1.2, eqn S1.4 is quite different than
the bias ⟨X⟩BayesAv we discuss here. There we compared height variations over repeated
samples of N women; here we use a single sample of N heights and average over the
underlying true distributions that could have produced the data.

As we mentioned earlier, uniform priors seem unbiased. But a prior uniform in the
standard deviation σ is not uniform in the variance σ2!

(b) Consider a uniform prior in the variance v = σ2, so P (v) is constant. What
is P (σ)? (Hint: The probability of being in corresponding intervals must agree, so
P (σ)dσ = P (v)dv.) What is α for a uniform prior on the variance? Calculate the
mode and the average for our three samples SN = Nσ2

pop, (N = 4, 40, and 400, µ = µ0)
for a uniform prior on the variance. Compare with the naive estimate.

Unmeasured rates of biochemical reactions are examples of parameters that are often
uncertain over many orders of magnitude. Surely our prior expectation that the rate
is in the range Γ ∈ (10−3, 10−4) should not be a million times smaller than the rate
is in the range Γ ∈ (103, 104) (as a uniform prior would suggest). Now consider using
instead the time-scale τ = 1/Γ as the parameter—a uniform prior in τ would weight
the two intervals differently by a factor of a million in the opposite direction. Jeffrey’s
prior, uniform in the logarithm, fixes this problem.

(c) Consider a uniform prior in the log of the width log(σ). Show that P (σ) ∝ 1/σ,
so α = −1. Check that the prior Pα(σ) integrated over a range (σ0, 10σ0) is indeed
constant, independent of σ0. Calculate the mode and the average for our three samples
SN = Nσ2

pop (N = 4, 40, and 400, µ = µ0) for Jeffrey’s prior.



Chapter 6

Visualizing model behavior

Fig. 6.1 The model manifold for the 2D Ising model isometrically embedded in a
4D Minkowski-like space using isKLe (intensive symmetrized Kullback–Leibler embedding),
from Teoh et al. [19] (see Exercise S6.3). (a) Three-dimensional embedding, showing the
critical point at M = 0, T = Tc, the jump in magnetization opening below Tc, and the
way the magnetization grows at fixed temperature as the external field is raised. Note that
the isKL embedding is a 45 degree rotation of the 4D graph of energy and magnetization
versus temperature and field. (b) Six projections into the various pairs of coordinates. The
red coordinates are time-like – they contribute negative distance to the differences between
points.

The field of information geometry generally studies the space of behaviors for probabilistic
models. For example, the Ising model makes predictions for the probability distribution of
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spin configurations, and thus for all equilibrium behavior of a system. In this chapter, we
shall discuss methods for properly visualizing model manifold for probabilistic model (e.g.,
the 2D surface of predictions in Fig. 6.1, swept out by varying the two parameters T and H in
the Ising model). This is in general a surface in the infinite-dimensional space of probability
distributions. (See Fig. 6.1.)

6.1 Visualizing least-squares models

Let us first summarize the methods we have been using to visualize the model manifolds for
least-squares models. Recall from Chapter 2 that that least-squares model manifolds are the
surface y(θ) in prediction space swept out as the parameters θ are varied through all allowed
values. The parameters can be viewed as coordinates on the model manifold, and the metric
tensor is gαβ = JT

αiJiβ, where Jiα = (∂αyi) is the Jacobian of the map from parameters into
data space.

How have we been visualizing the behavior of these least-squares models? One might think
that we can visualize only three predictions at a time. Our discovery that many systems
are sloppy, with predictions lying on hyperribbons, suggests that we could plot a few of the
longest axes of the model manifold.
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Fig. 6.2 PCA projections of daily stock prices for 705 large companies over ten years,
from [7]. The upper left figure shows the two largest principal components; the figure in
column M row N shows the N+1st principal component plotted against the Mth. Note
that the ranges get smaller for the higher principal components fairly rapidly, and quite
rapidly become dominated by noise. The dashed lines form a hypertetrahedron whose vertices
are well correlated with sectors of the economy (depicted in different colors). The best fit
hypertetrahedron is notably more hyperribbon-like. One might argue that our ability to
categorize companies by whether they are in the energy sector or the tech sector is only
possible because of this hyperribbon structure. Of course, one could also imagine that the
traders who buy and sell stocks have agreed upon which companies are utilities, and vary
the utility prices in synchrony.

Unlike other ways of visualizing high-dimensional data with low-dimensional representations
(t-SNE, UMAP, manifold learning, . . . ) PCA preserves the pairwise distances between the
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prediction vectors y. That is, it rotates a geometrical structure that faithfully represents the
relation between the points, both at short distances and at long distances. We shall emulate
this feature in our visualizations of probabilistic model manifolds in later sections of this
chapter.

The fact that high-dimensional data from a variety of fields can so often be effectively visu-
alized using PCA naively would seem incomprehensible. Why would the first few dimensions
capture the important behavior? Our information geometry work suggests that this hyper-
ribbon structure is natural, at least for multiparameter models fit to data. Perhaps the world
is sloppy, generically providing low-dimensional behaviors. Or, perhaps, scientists specialize
in studying comprehensible systems, amenable to low-dimensional projections.

6.2 Visualizing probabilistic model manifolds

In recent times we have been exploring the model manifold for cases like the Ising model
where the results of a model are best viewed not as a vector of predictions y(θ), but as
a probability distribution ρθ(x) for the different states x of the system. Here x could be
the possible spin configurations {sij} of the 2D Ising model (Fig. 6.1), or the temperatures
T (Θi,Φj) of the cosmic microwave background radiation at the measured directions Θ,Φ in
the sky [13], or (more simply) the mean and standard deviation h, σh of the heights of people
in Finland (Fig. 6.7, Exercise S1.2).

We confine ourselves to visualization methods which faithfully reproduce the natural geom-
etry. As we discussed in Section 6.1, PCA faithfully preserves both the short-distance and
long-distance geometry of the vectors it visualizes (although the projection onto the main
principle components loses some of this information). The short-distance geometry for prob-
abilistic models is governed by the Fisher Information Metric (FIM) metric in probability

space—the Fisher Information Metric (FIM) gαβ = −
〈

∂2 log ρ(x)
∂θα∂θβ

〉
(eqn 3.2). Exercise S2.4

discusses how the FIM distance is related to the differences in model behavior. In particular,
it measures how hard it is to work backward from the behavior to distinguish one model from
the other. It gives a bound on how well one can measure the parameters in a model using
experimental tests.

Preserving the long-distance geometry is more of a challenge. The model manifold for nonlin-
ear least squares inherits the RM metric of the space of experimental data vectors scaled with
their error bars (Section 3.2). But what is the shape of the space of probability distributions?

Exercise S6.1 explains that probability space for a distribution ρθ(x) where x has N values
is geometrically an “octant” of a hypersphere of radius 2 in dimension N − 1. The Hellinger
embedding maps ρθ(x) to a point 2(

√
ρθ(x1), · · · ,

√
ρθ(xi),

√
ρθ(xN)), which lies on the

sphere since ρ(x) sums to one. You will argue that this is the natural embedding, and you
will use it to derive the formula for the FIM.



6.2. VISUALIZING PROBABILISTIC MODEL MANIFOLDS 51

The Hellinger embedding is not useful for visualizing large, complicated probabilistic models:
it is doomed by the curse of dimensionality, as illustrated by Figure 6.3. As soon there is
enough data to make several distinguishable probability distributions, the model manifold
must crumple in order to fit into flat Euclidean space (Fig. 6.4).

Fig. 6.3 Euclidean embeddings are doomed. In (b) and (a) we see the shortest path
between two distant Gaussians P (x) and Q(x) in x space and in probability space. No matter
how distant two distributions are in real space, their geodesic distance (using the FIM metric)
cannot be larger than π. (The longest arc in the positive octant has angle π/2, and the FIM
sphere is of radius two.) In (c), we see a 3D projection of the path in probability space
given by sliding the Gaussians from P to Q. Every time a new distribution becomes nearly
orthogonal to the others, it adds a dimension to the projection. For a large Ising model (or the
cosmic microwave background radiation), the snapshots at even slightly different parameters
quickly become easily distinguished. Any effective low-dimensional visualization will need to
crumple the model manifold to fit it into Euclidean space. (see Fig. 6.4). From [19].
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Fig. 6.4 A crocheted representation of the Gaussian fit model manifold. A Gaussian
whose mean µ and standard deviation σ are fit to data is a probabilistic model whose FIM
yields a constant negative curvature: it is a hyperbolic space, H2. A portion of H2 can be
isometrically embedded in 3D, but since the circumference grows faster than the radius, it
must necessarily get more wiggly as the patch grows. Leafy vegetables like kale do this,
and it is also possible to reproduce it more quantitatively using knitting (shown here). As
described in Fig. 6.3, probabilistic models like Gaussian fits need to crumple their embeddings
to project faithfully into Euclidean spaces. Fig. 6.7 shows how this may be bypassed with
our intensive embeddings. (With permission from Daina Taimina [18].)

Quinn et al. [13] confronted this challenge in her quest to analyze the ΛCDM (cold-dark
matter) model of the early Universe, as it applies to the cosmic microwave background
radiation experiments of Niemack and colleagues. She could compute the FIM (eqn 3.2) at
the best fit of the model to our Universe, whose eigenvalues are sloppy (as shown on the left of
Fig. 6.5). But the Hellinger embedding was intrinsically high dimensional: PCA showed just
a bit of dust with a blob in the center, where the variance was in higher dimensions. As the
ΛCDM model predicts the probability of the pattern found in our Universe, it suffers from
the curse of dimensionality. Quinn used the replica trick to take the limit of the Hellinger
metric in the limit of zero data (see Exercise S6.2 and Figs 6.5 and 6.6), giving our first
intensive embedding method, which we called inPCA (Fig. 6.5).
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Fig. 6.5 A portion of the model manifold for the Universe. Taking the limit of
zero data, we generalized PCA to use the Bhattacharyya divergence instead of the Hellinger
distance, yielding the model manifold here shown projected onto the largest two inPCA
components. On the left find the sloppy eigenvalues evaluated at the best fit to our Universe
(dot near center). On the right, find the lengths of the model manifold as measured by the
variance of the inPCA components (not as sloppy). (From Quinn et al. [13].)
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Fig. 6.6 Deep neural network training trajectories with inPCA. We trained many
types of deep neural networks to classify images. Shown are the probability-space trajectories
they took, starting from ignorance P0 (all categories equally likely) towards truth (certainty
for correct categories). The probability space has around half a million dimensions. Three
inPCA components capture 76% of the information about their learning paths. What is
amazing is not that we can tell the differences between different network architectures. It
is that we can view them at all for such a complex, nonlinear, high-dimensional learning
process. (From Mao et al. [10].)

InPCA rederived the classic Bhattacharyya divergence between probability distributions in
the limit of zero data. (It is not a distance because it does not satisfy the triangle inequality).
The Bhattacharyya divergence is one of a large family of ‘intensive’ divergences that we find
lift the curse of dimensionality, allowing a few dimensions to capture most of the behavior of
complex models while preserving the local FIM metric. Other intensive divergences (Rényi,
Kullback–Leibler), violating the triangle inequality and by using a logarithm, bypass the
difficulties of the Hellinger distance. They agree with least-squares fits by giving a distance
between Gaussians equal to the number of standard deviations separating them. Using them
to search for low-dimensional visualizations, however, demand a Minkowski-like embedding
space (Fig. 6.7). See Exercise S6.3, and references [19, 11].
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Fig. 6.7 The model manifold for a Gaussian fit: the hyperbolic space H2. Here we
use the Gaussian fit model of Fig. 6.4 with mean µ and standard deviation σ to illustrate
how using Minkowski space can bypass the curse of dimensionality (Fig. 6.3) and its need to
crumple the model manifold. The model manifold with a constant negative curvature (the
Poincaré half-plane, RP2) is entertainingly (but not isometrically) illustrated in the upper
left of panel (a), Escher’s “Heaven and Hell” (Circle Limit IV). It has a smooth, intuitive
isKL embedding (Exercise S6.3) with one (vertical) time-like axis. Our isKLe embedding
using a symmetrized Kullback–Leibler divergence is a four-dimensional hyperboloid in our
Minkowski space. From [19]. .

Calculating the divergence between to parameter values of a large system can be daunting:
the probability vector for a 10×10 Ising model with 100 spins has N = 2100 components.
Exercise S6.3 describes one particular divergence which we discover has a deep connection
to statistical mechanics. You will show that the symmetrized Kullback–Leibler divergence
(which we introduce briefly) in many cases yields explicit formulas for the coordinates of an
isometric embedding in terms of familiar quantities easily estimated. In particular for the
Ising model in Fig. 6.1, the four coordinates for the model at a temperature T and external
field H are H/kBT ±M and −J/kBt± (E +MH)/J (see Exercise S6.3).

Finally, Fig. 6.8 shows the resulting model manifold for the ideal gas (which you can show
in Exercise S2.6 has zero curvature and can also be drawn on the plane).
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Fig. 6.8 The space of predictions for the ideal gas. In Exercise S2.6, we found that the
model manifold could be embedded in the plane, R2. The ideal gas Boltzmann distribution,
as a function of P and T , is an exponential family. The isKLe embedding is a bent sheet
in Minkowski space. As it must, it has no extrinsic curvature; isometric embeddings for
the same model can differ in this way. The path taken in the Carnot cycle is illustrated.
From [19].

Exercises

S6.1 Hellinger and the FIM. (Information geometry, Statistics) ⃝a
What is the shape of the space of probability distributions?

First, the space of probability distributions is often very high dimensional. The predic-
tion is sometimes discrete: if there are 100 spins in an 10×10 Ising model, there are 2100
probabilities ρ(s) which sum to one. It is often continuous: if one fits a Gaussian ρx,σ(x)
to data, the model manifold is a two-dimensional surface in an infinite-dimensional
space of possible probability functions.

Second, even if the prediction is discrete, it is not natural to treat the prediction as a
vector, because the natural distance between two predictions is not the sum of squares
of the differences between the individual probabilities. We can see this by considering
how difficult it is to measure a small change in probability of one of the predictions.

(a) Consider flipping a coin to measure the small probability ρ that it lands on its edge.
After F ≫ 1/ρ flips, what is the error in your estimate of ρ, to lowest order in ρ? How
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many flips do you need to estimate ρ to an accuracy ϵ? Is it equally easy to measure
rare events and common events to an absolute error of ϵ? Which is harder?

The probability ρ(x) is normalized,
∑

x ρ(x) = 1. Taking the square root of each entry
gives a point on the unit hypersphere (in the positive “octant”, with all components
greater than zero). Let us check that it is uniformly challenging to estimate the square
roots of the components with differing probabilities.

(b) In the above experiment, what is the error in your estimate of
√
ρ, to lowest order

in ρ? Is it equally easy to measure the square root of the probability of rare events and
common events?

So, we conjecture that a natural measure of distance on the sphere of
√
ρ is the Eu-

clidean distance in the embedding space

|ρ1 − ρ2|sphere =
√

(
√
ρ1 −

√
ρ2)2 =

√∑
x

(
√
ρ1(x)−

√
ρ2(x))2. (S6.1)

This is, up to a constant, the Hellinger distance, sometimes called the Hellinger di-
vergence (because all the other measures for separations between probabilities are not
proper distances.)

Suppose we now have a model ρθ(x) depending on parameters θ. The metric tensor
gαβ is defined to be the dependence of the distance on small changes in parameters,
θ′ = θ + ϵδ. The squared distance to quadratic order should be

|ρθ+ϵδ − ρθ|2 = ϵ2gαβδαδβ. (S6.2)

(c) Show that the distance on the sphere implies that

gsphereαβ =

∫
dx1/4ρ(∂α log ρ)(∂β log ρ) =

1/4⟨(∂α log ρ)(∂β log ρ)⟩x. (S6.3)

But we have been told that the natural distance in probability space is given by the
Fisher Information Matrix (FIM). Equation 3.2 tells us

gFIMαβ = −
〈
∂2 log ρ(x)

∂θα∂θβ

〉
= −

∫
dxρ(x)

∂2 log ρ(x)

∂θα∂θβ

(S6.4)

Are these different? The version gFIM in eqn 3.2 is more convenient for us, but it equals
4gsphere, which is also commonly used.

(d) Show this.

The Hellinger distance perhaps should have been defined to be twice as big (the distance
on a sphere of radius two), so the squared distance for nearby points would agree
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with the FIM. Or, even better, the FIM should have been defined to be a factor of
four smaller. Instead, the Hellinger distance is sometimes the sphere distance, and
sometimes the squared distance divided by square-root of two (so with a metric tensor
one eighth that of the FIM).

S6.2 Bhattacharyya and the inPCA embedding.1 (Information geometry, Statis-
tics) ⃝a
In Exercise S6.1, we saw that the space of probability distributions is naturally viewed
as a hypersphere, where

√
ρ(x) is viewed as a vector with components labeled by x.

We also saw that the distances between points on this sphere gave the natural Fisher
information metric for local distances between probability distributions. A probabilistic
model like the Ising model then has a natural, isometric embedding as a surface on this
sphere. Unfortunately, we also saw that this embedding is intrinsically high dimensional
for interesting models: there is no way to visualize a large Ising model by projecting it
into a small dimensional space.

This is in sharp contrast with the nonlinear least squares models we have studied in
the rest of this book! There the predictions lie on hyperribbons in the behavior space,
naturally forming an isometric, low-dimensional embedding that we can visualize using,
for example, principal component analysis (as in Exercise S3.1). Can we find a way to
do this for probabilistic models?

The key problem is that systems like large Ising models, or experiments measuring
the cosmic microwave background radiation, have too much precise data. Quinn [13]
pointed out that, once parameters have shifted even a tiny amount, the behavior is
obviously distinguishable with simple measurements: the probability of a snapshot
of one Ising model (or one Universe’s cosmic microwave background radiation) being
reproduced at the other temperature and pressure (or Hubble constant and baryon
density) becomes near zero.

Consider the sphere distance (eqn S6.1), whose square

d2sphere(ρ1, ρ2) =
∑
x

(√
ρ1(x)−

√
ρ2(x)

)2
= 2(1−√

ρ1 ·
√
ρ2), (S6.5)

can be written in terms of a dot product between points on the sqrt probability sphere.
(The Hellinger distance and the natural FIM local distances agree with the sphere
distance up to constants.)

(a) Note that the two forms of d2sphere in eqn S6.5 are equal, because the densities are
normalized. Suppose there is no overlap between two Ising model ensembles. That is,
for all spin configurations s of an Ising model with significant probability ρT,H(s) > 0,
the probability ρT ′,H′ = 0. What is the sphere distance between the two?

1This exercise is based on Quinn et al. [12].
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(b) Suppose there are many ensembles at different temperatures and fields, with mutu-
ally orthogonal probability distributions. What geometrical figure will they form on the
hypersphere? Can this be viewed as a hyperribbon?

Quinn et al. used the replica trick to take the limit of zero data. Suppose we take
n snapshots of our Ising model, {s1, . . . , sn}. We can view this as one snapshot of n
uncoupled replicas of the Ising model, all with the same parameters, with a probability
distribution

ρ
[n]
T,H(s1, . . . , sn) = ρT,H(s1)ρT,H(s2) . . . ρT,H(sn). (S6.6)

(c) Note that the replicated dot product

√
ρ
[n]
1 ·
√
ρ
[n]
2 =

∑
s1
· · ·
∑

sn

∏n
i=1

√
ρ1(si)

√
ρ2(si).

Show that it can be written as
(∑

s

√
ρ1(s)

√
ρ2(s)

)n
= (

√
ρ1 ·

√
ρ2)

n. Have we made

the orthogonality problem better or worse?

Thus you have shown that the distance per replica

(d
[n]
replicated)

2(ρ1, ρ2) = d2replicated(ρ
[n]
1 , ρ

[n]
2 )/n = 2(1− (

√
ρ1 ·

√
ρ2)

n)/n. (S6.7)

The replica trick is to boldly use the formula limn→0(x
n − 1)/n = log(x). Especially

regarding the replicated partition function of disordered systems like spin glasses, using
this formula is mathematically dubious but physically extremely useful. Here it yields
the Bhattacharyya divergence between the two probability distributions.

(d) Show that limn→0 d
[n](ρ1, ρ2)

2 = −2 log(
√
ρ1 ·

√
ρ2). Up to the multiplicative factor

separating our sphere distance from that of the FIM, you can check on your favorite
Web search or AI that this yields the Bhattacharyya divergence.

Using this metric, along with a version of principal component analysis called MDS2

we succeed in averting the curse of dimensionality, as shown in Figs 6.5 and 6.6.

S6.3 Kullback–Leibler and isKLe.3 (Information geometry, Statistics) ⃝a
To visualize the model manifold in information geometry, we want to preserve some
measure of the distance between the predictions. For models whose output is a probabil-
ity defined over a large number of states, it is usually not possible to directly calculate
that distance. Of course, a direct measure of the magnetization of an N -spin Ising
model would also demand an infeasible 2N computations of the energy: perhaps one
could develop a Monte-Carlo method for calculating the Bhattacharyya divergence of
inPCA (Exercise S6.2) or the Hellinger distance (Exercise S6.1).

In Exercises S2.6 and S2.7 we found a deep relation between the Fisher Information
Metric (measuring local distances between probability distributions) and second deriva-
tives of the free energy like the specific heat and thermal expansion coefficient. Here

2We rederived multidimensional scaling by taking the zero-replica limit of principal component analysis.
It can be used for any distance measure, not just the Bhattacharyya divergence. So, for example, our isKLe
embeddings [19] use MDS with the symmetrized Kullback–Leibler embedding (see Exercise S6.3 and Figs 6.1,
6.7, and 6.8).

3This exercise is based on Teoh et al. [19].
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we discover a deep relation between a global measure of distance between distribu-
tions and first derivatives of the free energy. You shall show that the Kullback–Leibler
divergence between two distributions, once symmetrized, can be written in terms of
the magnetization and the energy for Ising models (uncovered by Teoh et al. [19], see
Fig. 6.1).

The Ising model is a particular example of what probabilists call an exponential family.
A probability distribution ρθ(x) is an exponential family if it can be written in the
form

ρθ(x) = f(x)g(θ) exp

(∑
γ

ηγ(θ)Tγ(x)

)
. (S6.8)

The Tγ are called the sufficient statistics for the distribution; they hold all the informa-
tion about the configuration x needed to determine the probability; The ηγ are called
the natural parameters (see Exercise S1.2).

Note that eqn S6.8 has a form similar to a Boltzmann distribution: for the Ising model

ρT,H(s) = exp
(
−(J

∑
<ij> sisj −H

∑
i si)/kBT

)
/Z(T,H).

(a) What are the two natural parameters and two sufficient statistics for our Ising
model? What is g(θ)? Show that f(x) = 1. It will be convenient to work in these
natural parameters (as we did in Exercises S2.6 and S2.7). Let us call η = {−β, h}
and T(s) = {e(s),m(s)}.
The Kullback–Leibler divergence between two probability distributions ρ(x) and σ(x)
is

KL(ρ||σ) =
∑
x

ρ(x) log (ρ(x)/σ(x)) . (S6.9)

Notice that the formula reminds us of the formula for the Shannon entropy S =
−k
∑

(ρ log(ρ)). It has many physical interpretations and uses in statistics (expected
surprise from using the wrong model, extra bits using the wrong coding algorithm, and
so on.)

(b) Calculate the divergence KL(ρ1(β1, h1)||ρ2(β2, h2)) in terms of Z1, Z2, the four
natural parameters, e1 = ⟨e(s)⟩ρ1 and m1 = ⟨m(s)⟩ρ1.
The KL divergence is not symmetric (as a distance should be). But we can use the
symmetrized KL divergence (sometimes called the Jeffrey’s divergence)

sKL(ρ, σ) = KL(ρ||σ) +KL(σ||ρ) (S6.10)

as a kind of distance.4

(c) Show that the sKL divergence is −(β1 − β2)(e1 − e2) + (h1 − h2)(m1 −m2).

4It is zero if ρ = σ and symmetric, and one can check that it agrees with the FIM when the deviation
between ρ and σ goes to zero. It does not satisfy the triangle inequality, but this is precisely why it is valuable
to us, since the triangle inequality dooms low dimensional embeddings (see Exercise S6.1).
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This is a known result, for a general exponential family. But what was not realized
(to our knowledge) is that this can be used to find coordinates for the two points!
Although, as Exercise S6.2 and more generally for multidimensional scaling embeddings,
some of the coordinates are “timelike”, with negative squared contributions to the
distance. The space-like coordinates are the averages5 of the natural parameters and
their statistics, (−β + e)/2 and (h +m)/2, and the time-like coordinates are half the
differences (−β − e)/2 and (h−m)/2,

T±
β = 1/2(−β ± e)

T±
h = 1/2(h±m)

(S6.11)

(d) Show that the sKL divergence between ρ1 and ρ2 indeed is given by the sum of
the squares of the space-like coordinate differences minus the sum of the squares of the
time-like coordinate differences.

Note the relation between our model manifold embedding in a Minkowski space and
the model graph formed by plotting (e(β, h),m(β, h)) in four dimensions. Rotating each
conjugate pair (β, e) and (h,m) of the model graph by 45 degrees generates the isometric
embedding. Note that space-time rotations are not isometric, however. Indeed, the fully
magetized states in Fig. 6.1 at low temperatures and large fields are at zero distance
from one another (they are the same state), but arrange in a 45 degree diagonal with
light-like separations.

The explicit formulas make generating model manifolds in most statistical mechan-
ics problems completely straightforward. Fig. 6.1, showing the two-dimensional Ising
model, uses a standard Monte-Carlo evaluation of the field and temperature-dependent
energy and magnetization. (The Wolff algorithm can be generalized to work in an
external field [8], making simulations like these fast even near the critical point.) One
imagines using simulations like these to

Figs 6.8 and 6.7 show other illustrations of applications of the isKLe embedding.

S6.4 Distances in probability space.6 (Statistics, Mathematics, Information geome-
try) ⃝3
In statistical mechanics we usually study the behavior expected given the experimental
parameters. Statistics is often concerned with estimating how well one can deduce the
parameters (like temperature and pressure, or the increased risk of death from smoking)
given a sample of the ensemble. Here we shall explore ways of measuring distance or
distinguishability between distant probability distributions.

Exercise S2.4 introduces four problems (loaded dice, statistical mechanics, the height
distribution of women, and least-squares fits to data), each of which have parameters θ

5Note that the natural parameter for the energy is −β. It may seem weird to add and subtract fields and
magnetizations! One can find other coordinate sets (e.g., (λh± 1/λm)/2) which can be used to fix the units.
These correspond to Lorentz boosts in the Minkowski-like embedding space.

6This exercise was developed in collaboration with Katherine Quinn.
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which predict an ensemble probability distribution P (x|θ) for data x (die rolls, particle
positions and momenta, heights, . . . ). In the case of least-squares models (eqn S2.21)
where the probability is given by a vector xi = yi(θ) ± σ, we found that the distance
between the predictions of two parameter sets θ and ϕ was naturally given by |y(θ)/σ−
y(ϕ)/σ|. We want to generalize this formula—to find ways of measuring distances
between probability distributions given by arbitrary kinds of models.

Exercise S2.4 also introduced the Fisher information metric (FIM) in eqn 3.2:

gµν(θ) = −
〈
∂2log(P (x))

∂θα∂θβ

〉
x

(S6.12)

which gives the distance between probability distributions for nearby sets of parameters

d2(P (θ), P (θ + ϵ∆)) = ϵ2
∑
µν

∆µgµν∆ν . (S6.13)

Finally, it argued that the distance defined by the FIM is related to how distinguishable
the two nearby ensembles are—how well we can deduce the parameters. Indeed, we
found that to linear order the FIM is the inverse of the covariance matrix describing
the fluctuations in estimated parameters, and that the Cramér–Rao bound shows that
this relationship between the FIM and distinguishability works even beyond the linear
regime.

There are several measures in common use, of which we will describe three—the
Hellinger distance, the Bhattacharyya “distance”, and the Kullback–Liebler divergence.
Each has its uses. The Hellinger distance becomes less and less useful as the amount
of information about the parameters becomes large. The Kullback–Liebler divergence
is not symmetric, but one can symmetrize it by averaging. It and the Bhattacharyya
distance nicely generalize the least-squares metric to arbitrary models, but they vio-
late the triangle inequality and embed the manifold of predictions into a space with
Minkowski-style time-like directions [13].

Let us review the properties that we ordinarily demand from a distance between points
P and Q.

• We expect it to be positive, d(P,Q) ≥ 0, with d(P,Q) = 0 only if P = Q.

• We expect it to be symmetric, so d(P,Q) = d(Q,P ).

• We expect it to satisfy the triangle inequality, d(P,Q) ≤ d(P,R) + d(R,Q)—the
two short sides of a triangle must extend at total distance enough to reach the
third side.

• We want it to become large when the points P and Q are extremely different.

All of these properties are satisfied by the least-squares distance of Exercise S2.4, be-
cause the distances between points on the surface of model predictions is the Euclidean
distance between the predictions in data space.
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Our first measure, the Hellinger distance at first seems ideal. It defines a dot product
between probability distributions P and Q. Consider the discrete gambler’s distribu-
tion, giving the probabilities P = {Pj} for die roll j. The normalization

∑
Pj = 1

makes {
√

Pj} a unit vector in six dimensions, so we define a dot product P · Q =∑6
j=1

√
Pj

√
Qj =

∫
dx
√

P (x)
√
Q(x). The Hellinger distance is then given by the

squared distance between points on the unit sphere:7

d2Hel(P,Q) = (P −Q)2 = 2− 2P ·Q

=

∫
dx
(√

P (x)−
√

Q(x)
)2
.

(S6.14)

(a) Argue, from the last geometrical characterization, that the Hellinger distance must
be a valid distance function. Show that the Hellinger distance does reduce to the FIM
for nearby distributions, up to a constant factor. Show that the Hellinger distance never
gets larger than

√
2. What is the Hellinger distance between a fair die Pj ≡ 1/6 and a

loaded die Qj = {1/10, 1/10, . . . , 1/2} that favors rolling 6?

The Hellinger distance is peculiar in that, as the statistical mechanics system gets large,
or as one adds more experimental data to the statistics model, all pairs approach the
maximum distance

√
2.

(b) Our gambler keeps using the loaded die. Can the casino catch him? Let PN(j) be
the probability that rolling the die N times gives the sequence j = {j1, . . . , jN}. Show
that

PN ·QN = (P ·Q)N, (S6.15)

and hence

d2Hel(PN , QN) = 1− (P ·Q)N. (S6.16)

After N = 100 rolls, how close is the Hellinger distance from its maximum value?

From the casino’s point of view, the certainty that the gambler is cheating is becoming
squeezed into a tiny range of distances. (PN and QN becoming increasingly orthogonal
does not lead to larger and larger Hellinger distances.) In an Ising model, or a system
with N particles, or a cosmic microwave background experiment with N measured areas
of the sky, even tiny changes in parameters lead to orthogonal probability distributions,
and hence Hellinger distances near its maximum value of one.8

The Hellinger overlap (P · Q)N = exp(N log(P · Q)) keeps getting smaller as we take
N to infinity; it is like the exponential of an extensive quantity.

7Sometimes it is given by half the distance between points on the unit sphere, presumably so that the
maximum distance between two probability distributions becomes one, rather than

√
2.

8The problem is that the manifold of predictions is being curled up onto a sphere, where the short-cut
distance between two models becomes quite different from the geodesic distance within the model manifold.
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Our second measure, the Bhattacharyya distance, can be derived from a limit of the
Hellinger distance as the number of data points N goes to zero:

d2Bhatt(P,Q) = lim
N→0

1/2d
2
Hel(PN , QN)/N

= − log(P ·Q) (S6.17)

= − log

(∑
x

√
P (x)

√
Q(x)

)
.

We sometimes say that we calculate the behavior of N replicas of the system, and then
take N → 0. Replica theory is useful, for example, in disordered systems, where we
can average F = −kBT log(Z) over disorder (difficult) by finding the average of ZN

over disorder (not so hard) and then taking N → 0.

(d) Derive eqn S6.17. (Hint: ZN ≈ exp(N logZ) ≈ 1 +N logZ for small N .)

The third distance-like measure we introduce is the Kullback–Leibler divergence from
Q to P .

dKL(Q|P ) = −
∫

dxP (x) log(Q(x)/P (x)). (S6.18)

(c) Show that the Kullback–Liebler divergence is positive, zero only if P = Q, but is not
symmetric. Show that, to quadratic order in ϵ in eqn S6.13, that the Kullback–Liebler
divergence does lead to the FIM.

The Kullback–Liebler divergence is sometimes symmetrized:

dsKL(Q,P ) (S6.19)

= 1/2(dKL(Q|P ) + dKL(P |Q))

=

∫
dx(P (x)−Q(x)) log(P (x)/Q(x)).

The Bhattacharyya distance and the symmetrized Kullback–Liebler divergence share
several features, both good and bad.

(d) Show that they are intensive [13]—that the distance grows linearly with repeated
measurements9 (as for repeated rolls in part (b)). Show that they do not satisfy the
triangle inequality. Show that they does satisfy the other conditions for a distance.
Show, for the nonlinear least-squares model of eqn S2.21, that they equal the distance
in data space between the two predictions.

9This also makes these measures behave nicely for large systems as in statistical mechanics, where small
parameter changes lead to nearly orthogonal probability distributions.
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S6.5 Can we burn information?10 (Mathematics, Thermodynamics, Information geom-
etry) ⃝4
The use of entropy to measure information content has been remarkably fruitful in
computer science, communications, and even in studying the efficiency of signaling
and sensing in biological systems. The Szilard engine (Exercise 5.2) was a key argu-
ment that thermodynamic entropy and information entropy could be exchanged for one
another—that one could burn information. We ask here—can they be exchanged? Are
information and entropy fungible?

P

P

2

T

T

2

1

Q

S

mg

Fig. S6.9 Piston control. Machta [9] studies a piston plus a control system to extract work
during expansion. To change the pressure, a continuously variable transmission, controlled
by a gradient of the entropy S, connects the piston to a mass under a gravitational force.
Minimizing the control cost plus the entropy cost due to fluctuations in the gear ratio lead
to a minimum entropy cost for control.

Szilard stores a bit of information as an atom on one side of a piston, and extracts PdV
work kBT log 2 as the piston expands—the same work needed to store a bit. Machta [9]
argues that there is a fundamental bound on the entropy cost for extracting this work.
He considers a system consisting of the piston plus a control mechanism to slowly
decrease the pressure and extract the work, Fig. S6.9. (See Feynman’s Ratchet and
pawl discussion [5, I.46], discussing fluctuations in a similar system.)

Machta argues that this cost is given by a path length in parameter space. To be specific,
Machta argues that to guide a system through a change in pressure from Pi to Pf should
cost an entropy11

⟨∆Scontrol⟩ = 2

∫ Pf

Pi

√
gPP |dP |. (S6.20)

The metric in this space, as discussed in Exercise S2.4, is

gPP = −⟨∂2 log(ρ)/∂P 2⟩, (S6.21)

the Fisher information metric, giving the natural distance between two nearby proba-
bility distributions.

10This exercise was developed in collaboration with Ben Machta, Archishman Raju, Colin Clement, and
Katherine Quinn

11We shall follow Machta and set kB = 1 in this exercise, writing it explicitly only when convenient.
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For example, in a Gibbs ensemble at constant pressure P = θ1, the squared distance
between two nearby pressures at the same temperature is

d2(ρ(X|P ), ρ(X|P + dP )) = gPP (dP )2, (S6.22)

leading directly to eqn S6.20.

Let us compute the metric gPP in the coordinates for the ideal gas in a piston (Exer-
cise S2.5), and then analyze the cost for thermodynamic control for Szilard’s burning
information engine in Exercise 5.2.

(a) Using eqns S6.21 and S2.26, show that gPP = (1 +N)/P 2.

(b) What is the entropy cost to expand a piston containing a single atom at constant
temperature by a factor of two? What is the work done by the piston? How does this
affect Szilard’s argument about burning information in Exercise 5.2?

Machta’s result thus challenges Szilard’s argument that information entropy and ther-
modynamic entropy can be exchanged. It also gives a (subextensive) cost for the Carnot
cycle (see Exercise S2.6).

S6.6 Averaging over disorder.12 ⃝3
A two-state spin takes values S = ±1. It is in an external field h, so that its Hamiltonian
is

H = −hS. (S6.23)

It is connected to a heat bath at temperature T .

(a) Compute its partition function Z, its Helmholtz free energy A, the entropy S, and
the specific heat13 c as a function of h and T . What is the entropy at T = 0, h > 0 and
at T = ∞? (The T → 0 limit is tricky: a graphical solution is fine.) Is the difference
as expected from our understanding of information entropy?

To model a system with dirt – a disordered system – one often adds a random term to
the Hamiltonian (like a random field for each spin). One then averages the answer over
the probability distribution of the disorder to predict the behavior of a large system.
This turns out to be trickier than it seems.

Let us calculate the average properties of our spin in a random field h, averaged over
a Gaussian probability distribution ρ(h) = exp(−h2/2σ2)/(

√
2πσ).

(b) Write in integral form the average of each of the quantities Z, A, S, and c over
the probability density ρ(h). All but one of these will be infeasible to evaluate in closed
form. Evaluate the integral for Z.

In interacting systems like spin glasses, it is much easier to calculate the average of Z
than the average of logZ or A. But we run into trouble.

12This problem was developed in collaboration with Stephen Thornton.
13Section 6.1 discusses the specific heat at constant volume cv, but the formulas are the same because here

there is no volume to be fixed.
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(c) Define Za = Z, and calculate the corresponding quantities Aa and Sa. Show that
Sa goes negative at low temperatures.

The entropy for each disorder you calculated in part (a) never goes negative. So its
average cannot be negative! We seem to be stuck with the integrals we cannot do in
closed form.

(d) Define Aq = A. Argue that Sq, defined as the appropriate derivative of Aq, is equal
to S from part (b).

Let us briefly consider a simpler scenario, where h can take only the three values 0 or
±h0 (with h0 > 0), each with probability 1/3.

(e) Write Aq and Aa exactly for this case, and evaluate them in the limit T → 0. Using

A = ⟨E⟩ − TS, what value should you expect for the average free energy at T = 0?
Does Aa appear to be giving unfair weights to disorder configurations with lower-energy
states?

Thus Aa gives an unfairly large weight to members of the disordered ensemble that
have unusually low energy configurations. For spin glasses, Aa gives unfair weights to
systems like the non-disordered Ising model, where a single spin configuration can make
all the bonds happy. This leads to an unphysical ferromagnetic–like transition.

Why the choice of subscripts? When we want to freeze our dirt into a particular
configuration, we quench the system quickly to a low temperature. (The blacksmith
pounding the red-hot horseshoe, after they get it into shape, quenches it in a bucket of
water.) Aq is the quenched free energy. We anneal a defective crystal by heating it up
to a large temperature T0 where its defects have enough energy to rearrange and come
to equilibrium. Aa = −kBT log(Z) is called the annealed free energy. But why does our
Aa correspond to an annealed free energy, where the “defects” come to equilibrium?

(f) Show that Za(T0) from part (c) at a particular temperature T0 is the true partition
function for a Hamiltonian

Ha = h2kBT0/2σ
2 − hS + C, (S6.24)

where the constant C = 1/2kBT0 log(2πσ
2). Thus Za discusses a system where h and

S are both weighted according to the Boltzmann distribution (so the field fluctuates
to equilibrate with the spin). In systems like spin glasses, one can calculate annealed
averages because they are, in disguise, the correct partition function for an undisordered
equilibrium system.

We must end with the replica trick that people use to bypass the infeasible integrals
we get from trying to average the log(Z), as in Aq = −kBT logZ. One can often
calculate Zn, the annealed disorder average of n replicas of a system. (Again, it is
feasible because it is in disguise an equilibrium physical system, whose dirt equilibrates
with the spins.) We then can find the average log(Z) and hence Aq:

(g) Show that log x = limn→0(x
n − 1)/n by writing xn = exp(n log x).
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We can then take the average of both sides and write log (Z) = limn→0(Zn − 1)/n.
Finding the right way of taking the limit n → 0 is harder than we are suggesting. The
original researchers used a “replica symmetric” method that works for many systems,
and works well in spin glasses for temperatures above the glass transition. Below the
glass transition, one must do something more exotic. Georgio Parisi received the No-
bel Prize in Physics in 2021 for showing certain disordered systems undergo a “replica
symmetry breaking” transition as the temperature is lowered, where certain correla-
tions within the system change dramatically in the spin glass phase. These methods
have been shown by Parisi and others to be powerful tools for solving models of ordi-
nary glass, analyzing deep neural network models in machine learning, and providing
the fastest algorithms for challenging “NP complete” models in computer science (see
Exercise 8.15).
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