
Computer Lab I: Expanding and interpolating sin(x)
Computational Physics 4480/7680, Astro 7690

James Sethna
Last modified at January 22, 2013, 8:33 pm

How do compiler writers evaluate mathematical functions like sin(x)? How can we generate
efficient implementations of our own special functions, or even write faster (but less accurate)
versions of standard functions?1

A standard technique in computation is to approximate expensive functions by fits to pre-
computed values (interpolation) or by generating approximate functional forms (expansion).
Interpolation can be linear, polynomial, spline, rational polynomial, barycentric rational
polynomial, etc. Expansion methods include Taylor series and Padé approximates; least-
squares fits and Chebyshev polynomials combine aspects of each. The group projects for the
first half of the semester will focus on first implementing a variety of these methods, then
testing them against one another for speed and accuracy, and finally generating ten-minute
presentations on various issues, methods, and techniques we addressed during this exercise.

In this first computer lab, we will launch each group into implementing one method of each
type: Taylor series and linear interpolation.

Taylor: Using the computational environment of your choice, write a routine that evaluates
the Taylor approximation to sin(x) with N terms. Test its accuracy (root-mean-square error)
and speed for a random distribution of 106 points between zero and 2π, for various N .

Linear interpolation: Using the computational environment of your choice, store the values
of sin(x) at equally-spaced points xn = n∆. Write a routine that linearly interpolates between
these evaluated points. Test its accuracy (root-mean-square error) and speed for a random
distribution of 106 points between zero and 2π, for various ∆.

1For example, Prof. Christopher Myers and I many years ago worked on a problem where we needed to
calculate sin(x) an enormous number of times, for randomly distributed points x. To speed things up, we
traded accuracy for speed; Myers implemented a spline fit to sin(x) which was much faster than that provided
by the system, but which was accurate to fewer decimal places.


