Group project: preparation for computer lab I. Computational Physics 4480/7680, Astro 7690 James Sethna Last modified at January 8, 2014, 10:27 pm

Before coming to computer lab Friday Jan. 31, please prepare answers to the following three warmup questions:

- 1. Timing Sine (from problem set 1): Build a table of a million equally-spaced numbers $0 \le x_n < 2\pi$. Find a method, inside your working environment, for calculating the amount of time a computation takes. Time how long it takes to calculate $\sin(x_n)$ and x_n^2 for your million points.
- 2. What is the Taylor series approximating

$$\sin(x) = \sum_{n=0}^{N-1} a_n x^n \tag{1}$$

about x = 0? If we assume the error in the truncated series is roughly given by the first neglected term $a_n x^n$, how big must N be before the absolute error for $\sin(2\pi)$ is less than double-precision machine accuracy $\epsilon_m = 2.22 \times 10^{-16}$? Can we hope to reduce the fractional error to below 1% at $x = 2\pi$?

3. What is the maximum value of the second derivative $\sin''(x)$? If we expand

$$\sin(x) \approx \sin(n\Delta) + (x - n\Delta)\sin'(n\Delta) + (x - n\Delta)^2/2!\sin''(n\Delta),$$
(2)

how small must Δ be for the linear approximation error to be less than ϵ_m ? (Hint: the maximum distance to the nearest data point is $\Delta/2$.)