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Useful reading
Numerical Recipes chapters 14, 15, & 16

Exercise 5.2, Aliasing and windowing, is now optional. Instead, do sections (a) and (f)
of Random matrix theory below, but for size = 40 and M ≥ 200, plotting the Wigner
surmise along with your histograms.

5.2.1 Random matrix theory.1 (Mathematics, Quantum) ©3
One of the most active and unusual applications of ensembles is random matrix theory,
used to describe phenomena in nuclear physics, mesoscopic quantum mechanics, and
wave phenomena. Random matrix theory was invented in a bold attempt to describe
the statistics of energy level spectra in nuclei. In many cases, the statistical behavior of
systems exhibiting complex wave phenomena—almost any correlations involving eigen-
values and eigenstates—can be quantitatively modeled using ensembles of matrices with
completely random, uncorrelated entries!

To do this exercise, you will need to find a software environment in which it is easy
to (i) make histograms and plot functions on the same graph, (ii) find eigenvalues of
matrices, sort them, and collect the differences between neighboring ones, and (iii) gen-
erate symmetric random matrices with Gaussian and integer entries. Mathematica,
Matlab, Octave, and Python are all good choices. For those who are not familiar with
one of these packages, I will post hints on how to do these three things under ‘Random
matrix theory’ in the computer exercises section of the book web site [?].

The most commonly explored ensemble of matrices is the Gaussian orthogonal ensem-
ble (GOE). Generating a member H of this ensemble of size N × N takes two steps.

• Generate an N×N matrix whose elements are independent random numbers with
Gaussian distributions of mean zero and standard deviation σ = 1.

• Add each matrix to its transpose to symmetrize it.

As a reminder, the Gaussian or normal probability distribution of mean zero gives a
random number x with probability

ρ(x) =
1√
2πσ

e−x2/2σ2

. (1)

1This exercise was developed with the help of Piet Brouwer.



One of the most striking properties that large random matrices share is the distribution
of level splittings.

(a) Generate an ensemble with M = 1000 or so GOE matrices of size N = 2, 4, and
10. (More is nice.) Find the eigenvalues λn of each matrix, sorted in increasing order.
Find the difference between neighboring eigenvalues λn+1 − λn, for n, say, equal to2

N/2. Plot a histogram of these eigenvalue splittings divided by the mean splitting, with
bin size small enough to see some of the fluctuations. (Hint: Debug your work with
M = 10, and then change to M = 1000.)

What is this dip in the eigenvalue probability near zero? It is called level repulsion.

For N = 2 the probability distribution for the eigenvalue splitting can be calculated
pretty simply. Let our matrix be M =

(

a b
b c

)

.

(b) Show that the eigenvalue difference for M is λ =
√

(c − a)2 + 4b2 = 2
√

d2 + b2

where d = (c−a)/2, and the trace c+a is irrelevant. Ignoring the trace, the probability
distribution of matrices can be written ρM(d, b). What is the region in the (b, d) plane
corresponding to the range of eigenvalue splittings (λ, λ + ∆)? If ρM is continuous and
finite at d = b = 0, argue that the probability density ρ(λ) of finding an eigenvalue
splitting near λ = 0 vanishes (level repulsion). (Hint: Both d and b must vanish to
make λ = 0. Go to polar coordinates, with λ the radius.)

(c) Calculate analytically the standard deviation of a diagonal and an off-diagonal el-
ement of the GOE ensemble (made by symmetrizing Gaussian random matrices with
σ = 1). You may want to check your answer by plotting your predicted Gaussians over
the histogram of H11 and H12 from your ensemble in part (a). Calculate analytically
the standard deviation of d = (c − a)/2 of the N = 2 GOE ensemble of part (b), and
show that it equals the standard deviation of b.

(d) Calculate a formula for the probability distribution of eigenvalue spacings for the
N = 2 GOE, by integrating over the probability density ρM(d, b). (Hint: Polar coordi-
nates again.)

If you rescale the eigenvalue splitting distribution you found in part (d) to make the
mean splitting equal to one, you should find the distribution

ρWigner(s) =
πs

2
e−πs2/4. (2)

This is called the Wigner surmise; it is within 2% of the correct answer for larger
matrices as well.3

(e) Plot eqn 2 along with your N = 2 results from part (a). Plot the Wigner surmise
formula against the plots for N = 4 and N = 10 as well.

2Why not use all the eigenvalue splittings? The mean splitting can change slowly through the spectrum,

smearing the distribution a bit.
3The distribution for large matrices is known and universal, but is much more complicated to calculate.



Does the distribution of eigenvalues depend in detail on our GOE ensemble? Or could
it be universal, describing other ensembles of real symmetric matrices as well? Let us
define a ±1 ensemble of real symmetric matrices, by generating an N×N matrix whose
elements are independent random variables, each ±1 with equal probability.

(f) Generate an ensemble with M = 1000 ±1 symmetric matrices with size N = 2, 4,
and 10. Plot the eigenvalue distributions as in part (a). Are they universal (independent
of the ensemble up to the mean spacing) for N = 2 and 4? Do they appear to be nearly
universal 4 (the same as for the GOE in part (a)) for N = 10? Plot the Wigner surmise
along with your histogram for N = 10.

The GOE ensemble has some nice statistical properties. The ensemble is invariant
under orthogonal transformations:

H → R⊤HR with R⊤ = R−1. (3)

(g) Show that Tr[H⊤H ] is the sum of the squares of all elements of H. Show that this
trace is invariant under orthogonal coordinate transformations (that is, H → R⊤HR
with R⊤ = R−1). (Hint: Remember, or derive, the cyclic invariance of the trace:
Tr[ABC] = Tr[CAB].)

Note that this trace, for a symmetric matrix, is the sum of the squares of the diagonal
elements plus twice the squares of the upper triangle of off-diagonal elements. That is
convenient, because in our GOE ensemble the variance (squared standard deviation) of
the off-diagonal elements is half that of the diagonal elements (part (c)).

(h) Write the probability density ρ(H) for finding GOE ensemble member H in terms
of the trace formula in part (g). Argue, using your formula and the invariance from
part (g), that the GOE ensemble is invariant under orthogonal transformations: ρ(R⊤HR) =
ρ(H).

This is our first example of an emergent symmetry. Many different ensembles of sym-
metric matrices, as the size N goes to infinity, have eigenvalue and eigenvector distri-
butions that are invariant under orthogonal transformations even though the original
matrix ensemble did not have this symmetry. Similarly, rotational symmetry emerges
in random walks on the square lattice as the number of steps N goes to infinity, and
also emerges on long length scales for Ising models at their critical temperatures.

4Note the spike at zero. There is a small probability that two rows or columns of our matrix of ±1 will

be the same, but this probability vanishes rapidly for large N .


