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Exercise 1.1 due in five days, Monday, January 27
Remainder due in two weeks, Monday, February 3
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Reading
Numerical Recipes, preface and chapters 1 and 2, skipping the technical bits. (Which

bits are technical depends on how much you already know...)

(Sherman–Morrison optional for Physics 480)

1.1 Plots. (Setup) ©2
It’s important that reading and writing files, generating data and plotting it be efficient
and convenient for you, whatever working environment you will be using in this course
and in your future researches.

Pick a working environment. Using it,

(a) Generate a list of one hundred points {xn, exp[−6 sin(xn)]}, with xn equally spaced
between zero and 2π. Plot these points, joined by line segments, as a thick green curve
(or a dashed line), in a graph with the axes labeled with large fonts (suitable for a
presentation or publication); print it. Zoom in on this plot to show just the y-axis
range between zero and one, and print that.

(b) Download the file NoisyFunction.dat from the course Web site http://www.physics.
cornell.edu/∼sethna/ teaching/ComputationalPhysics/ From this file, read the (tn, y(tn))
pairs into your working environment as two vectors t and y. Calculate log(y2) as a
vector, and plot it versus t, without lines connecting the points.

1.2 Condition Number and Accuracy.1 (Numerical) ©3
You may think this exercise, with a 2x2 matrix, hardly demands a computer. However,
it introduces tools for solving linear equations, condition numbers, singular value de-
composition, all while illustrating subtle properties of matrix solutions. Use whatever
linear algebra packages are provided in your software environment.

Consider the equation Ax = b, where

A =

(
0.780 0.563
0.913 0.659

)
and b =

(
0.217
0.254

)
. (1)

1Adapted from Saul Teukolsky, 2003.



The exact solution is x = (1,−1). Consider the two approximate solutions xα =
(0.999,−1.001) and xβ = (0.341,−0.087).

(a) Compute the residuals rα and rβ corresponding to the two approximate solutions.
(The residual is r = b − Ax.) Does the more accurate solution have the smaller
residual?

(b) Compute the condition number2 of A. Does it help you understand the result of (a)?
(Hint: V T maps the errors xα−x and xβ−x into what combinations of the two singular
values?)

(c) Use a black-box linear solver to solve for x. Subtract your answer from the exact one.
Do you get within a few times the machine accuracy of 2.2 × 10−16? Is the problem
the accuracy of the solution, or rounding errors in calculating A and b? (Hint: try
calculating Ax− b.)

1.3 Sherman–Morrison formula. (Numerical) ©3
Consider the 5x5 matrices

T =


E − t t 0 0 0

t E t 0 0
0 t E t 0
0 0 t E t
0 0 0 t E − t

 (2)

and

C =


E t 0 0 t
t E t 0 0
0 t E t 0
0 0 t E t
t 0 0 t E

 . (3)

These matrices arise in one-dimensional models of crystals.3 The matrix T is tridiago-
nal: its entries are zero except along the central diagonal and the entries neighboring
the diagonal. Tridiagonal matrices are fast to solve; indeed, many routines will start
by changing basis to make the array tridiagonal. The matrix C, on the other hand,
has a nice periodic structure: each basis element has two neighbors, with the first and
last basis elements now connected by t in the upper-right and lower-left corners. This
periodic structure allows for analysis using Fourier methods (Bloch waves and k-space).

2See section 2.6.2 for a technical definition of the condition number, and how it is related to singular
value decomposition. Look on the Web for the more traditional definition(s), and how they are related to
the accuracy.

3As the Hamiltonian for electrons in a one-dimensional chain of atoms, t is the hopping matrix element
and E is the on-site energy. As the potential energy for longitudinal vibrations in a one-dimensional chain,
E = −2t = K is the spring constant between two neighboring atoms. The tridiagonal matrix T corresponds
to a kind of free boundary condition, while C corresponds in both cases to periodic boundary conditions.



For matrices like C and T which differ in only a few matrix elements4 we can find C−1

from T−1 efficiently using the Sherman-Morrison formula (section 2.7).

Compute the inverse5 of T for E = 3 and t = 1. Compute the inverse of C. Compare
the difference ∆ = T−1 − C−1 with that given by the Sherman-Morrison formula

∆ =
T−1u⊗ vT−1

1 + v · T−1 · u
. (4)

4More generally, this works whenever the two matrices differ by the outer product u ⊗ v of two vectors.
By taking the two vectors to each have one non-zero component ui = uδia, vj = vδjb, the matrices differ at
one matrix element ∆ab = uv; for our matrices u = v = 1, 0, 0, 0, 1 (see section 2.7.2).

5Your software environment should have a solver for tridiagonal systems, rapidly giving u in the equation
T · u = r. It likely will not have a special routine for inverting tridiagonal matrices, but our matrix is so
small it’s not important.


