
Problem Set 2: Interpolation, Extrapolation, and Quadrature
Computational Physics

Physics 480/680
James Sethna; Due Wednesday, February 19
Last modified at January 8, 2014, 10:14 pm

Reading
Numerical Recipes chapters 3 and 4, skimming the technical bits

Exercise 2 parts (d & e) are optional for Physics 480, but (f) is expected for those in both
480 and 680.

2.1 Methods of interpolation. (Numerical) ©3
We’ve implemented four different interpolation methods for the function sin(x) on the
interval (−π, π). On the left, we see the methods using the five points ±π, ±π/2, and
0; on the right we see the methods using ten points. The graphs show the interpolation,
its first derivative, its second derivative, and the error. The four interpolation methods
we have implemented are (1) Linear, (2) Polynomial of degree three (M = 4), (3) Cubic
spline, and (4) Barycentric rational interpolation. Which set of curves (A, B, C, or D)
in Figure 1 corresponds with which method?

2.2 Numerical definite integrals. (Numerical) ©3
In this exercise we will integrate the function you graphed in the first, warmup exercise:

F (x) = exp(−6 sin(x)). (1)

As discussed in Numerical Recipes, the word integration is used both for the operation
that is inverse to differentiation, and more generally for finding solutions to differential
equations. The old-fashioned term specific to what we are doing in this exercise is
quadrature.

(a) Black-box. Using a professionally written black-box integration routine of your
choice, integrate F (x) between zero and π. Compare your answer to the analytic inte-
gral1 (≈ 0.34542493760937693) by subtracting the analytic form from your numerical
result. Read the documentation for your black box routine, and describe the combination
of algorithms being used.

(b) Trapezoidal rule. Implement the trapezoidal rule with your own routine. Use it to
calculate the same integral as in part (a). Calculate the estimated integral Trap(h) for
N +1 points spaced at h = π/N , with N = 1, 2, 4, . . . , 210. Plot the estimated integral
versus the spacing h. Does it extrapolate smoothly to the true value as h → 0? With
what power of h does the error vanish? Replot the data as Trap(h) versus h2. Does the
error now vanish linearly?

1π(BesselI[0, 6]− StruveL[0, 6]), according to Mathematica.
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Fig. 1 Interpolation methods.



Numerical Recipes tells us that the error is an even polynomial in h, so we can ex-
trapolate the results of the trapezoidal rule using polynomial interpolation in powers
of h2.

(c) Simpson’s rule (paper and pencil). Consider a linear fit (i.e., A+Bh2) to two points
at 2h0 and h0 on your Trap(h) versus h2 plot. Notice that the extrapolation to h → 0 is
A, and show that A is 4/3 Trap(h0)−1/3 Trap(2h0). What is the net weight associated
with the even points and odd points? Is this Simpson’s rule?

(d) Romberg integration. Apply M-point polynomial interpolation (here extrapolation)
to the data points {h2, Trap(h)} for h = π/2, . . . , π/2M , with values of M between two
and ten. (Note that the independent variable is h2.) Make a log-log plot of the absolute
value of the error versus N = 2M . Does this extrapolation improve convergence?

(e) Gaussian Quadrature. Implement Gaussian quadrature with N points optimally
chosen on the interval (0, π), with N = 1, 2, . . . 5. (You may find the points and the
weights appropriate for integrating functions on the interval (−1, 1) on the course Web
site; you will need to rescale them for use on (0, π).) Make a log-log plot of the absolute
value of your error as a function of the number of evaluation points N , along with the
corresponding errors from the trapezoidal rule and Romberg integration.

(f) Integrals of periodic functions. Apply the trapezoidal rule to integrate F (x) from
zero to 2π, and plot the error on a log plot (log of the absolute value of the error versus
N) as a function of the number of points N up to N = 20. (The true value should
be around 422.44623805153909946.) Why does it converge so fast? (Hint: Don’t get
distracted by the funny alternation of accuracy between even and odd points.)

The location of the Gauss points depend upon the class of functions one is integrating.
In part (e), we were using Gauss-Legendre quadrature, appropriate for functions which
are analytic at the endpoints of the range of integration. In part (f), we have a function
with periodic boundary conditions. For functions with periodic boundary conditions,
the end-points are no longer special. What corresponds to Gaussian quadrature for
periodic functions is just the trapezoidal rule: equally-weighted points at equally spaced
intervals.


