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Reading
Numerical Recipes chapters 8, 9, and 10, skimming the technical bits

4.1 The Birthday Problem. (Sorting, Random numbers) ©2
Remember birthday parties in your elementary school? Remember those years when
two kids had the same birthday? How unlikely!

How many kids would you need in class to get, more than half of the time, at least two
with the same birthday?

(a) Numerical. Write a routine BirthdayCoincidences(K, C) that returns the frac-
tion among C classes for which at least two kids (among K kids per class) have the
same birthday. (Hint: By sorting a random list of integers, common birthdays will
be adjacent.) Plot this probability versus K for a reasonably large value of C. Is it a
surprise that your classes had overlapping birthdays when you were young?

One can intuitively understand this, by remembering that to avoid a coincidence there
are K(K − 1)/2 pairs of kids, all of whom must have different birthdays (probability
364/365 = 1− 1/D, with D days per year).

P (K, D) ≈ (1− 1/D)K(K−1)/2 (1)

This is clearly a crude approximation – it doesn’t vanish if K > D! Ignoring subtle
correlations, though, it gives us a net probability

P (K, D) ≈ exp(−1/D)K(K−1)/2

≈ exp(−K2/(2D)) (2)

Here we’ve used the fact that 1− ε ≈ exp(−ε), and assumed that K/D is small.

(b) Analytical. Write the exact formula giving the probability, for K random inte-
gers among D choices, that no two kids have the same birthday. (Hint: What is the
probability that the second kid has a different birthday from the first? The third kid
has a different birthday from the first two?) Show that your formula does give zero if
K > D. Converting the terms in your product to exponentials as we did above, show
that your answer is consistent with the simple formula above, if K � D. Inverting
equation 2, give a formula for the number of kids needed to have a 50% chance of a
shared birthday.



Some years ago, we were doing a large simulation, involving sorting a lattice of 10003

random fields (roughly, to figure out which site on the lattice would trigger first). If we
want to make sure that our code is unbiased, we want different random fields on each
lattice site – a giant birthday problem.

Old-style random number generators generated a random integer (232 ‘days in the year’)
and then divided by the maximum possible integer to get a random number between
zero and one. Modern random number generators generate all 252 possible doubles
between zero and one.

(c) If there are 231 − 1 distinct four-byte positive integers, how many random numbers
would one have to generate before one would expect coincidences half the time? Generate
lists of that length, and check your assertion. (Hints: It is faster to use array operations,
especially in interpreted languages. I generated a random array with N entries, sorted
it, subtracted the first N − 1 entries from the last N − 1, and then called min on
the array.) Will we have to worry about coincidences with an old-style random number
generator? How large a lattice L×L×L of random double precision numbers can one
generate with modern generators before having a 50% chance of a coincidence? If you
have a fast machine with a large memory, you might test this too.

4.2 Washboard Potential. (Solving) ©2
Consider a washboard potential1

V (r) = A1 cos(r) + A2 cos(2r)− Fr (3)

with A1 = 5, A2 = 1, and F initially equal to 1.5.

(a) Plot V (r) over (−10, 10). Numerically find the local maximum of V near zero, and
the local minimum of V to the left (negative side) of zero. What is the potential energy
barrier for moving from one well to the next in this potential?

Usually finding the minimum is only a first step – one wants to explore how the mini-
mum moves and disappears. . .

(b) Increasing the external tilting field F , graphically roughly locate the field Fc where
the barrier disappears, and the location rc at this field where the potential minimum
and maximum merge. (This is a saddle-node bifurction.) Give the criterion on the first
derivative and the second derivative of V (r) at Fc and rc. Using these two equations,
numerically use a root-finding routine to locate the saddle-node bifurcation Fc and rc.

1A washboard is what people used to hand-wash clothing. It is held at an angle, and has a series of
corrugated ridges; one holds the board at an angle and rubs the wet clothing on it. Washboard potentials
arise in the theory of superconducting Josephson junctions, in the motion of defects in crystals, and in many
other contexts.



4.3 Sloppy Minimization. (Minimization) ©3
“With four parameters I can fit an elephant. With five I can make it waggle it’s
trunk.” This statement, attributed to many different sources (from Carl Friedrich
Gauss to Fermi), reflects the problems found in fitting multiparameter models to data.
One almost universal problem is sloppiness – the parameters in the model are poorly
constrained by the data.2

Consider the classic ill-conditioned problem of fitting exponentials to radioactive decay
data. If you know that at t = 0 there are equal quantities of N radioactive materials
with half-lives γn, the radioactivity that you would measure is

y(t) =
N−1∑
n=0

γn exp(−γnt). (4)

Now, suppose you don’t know the decay rates γn. Can you reconstruct them by fitting
the data to experimental data y0(t)?

Let’s consider the problem with two radioactive decay elements N = 2. Suppose the
actual decay constants for y0(t) are αn = n+2 (so the experiment has γ0 = α0 = 2 and
γ1 = α1 = 3), and we try to minimize the least-squared error3 in the fits C:

C[γ] =

∫ ∞

0

(y(t)− y0(t))
2 dt. (5)

You can convince yourself that the least-squared error is
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(a) Draw a contour plot of C in the square 1.5 < γn < 3.5, with enough contours
(perhaps non-equally spaced) so that the two minima can be distinguished. (You’ll also
need a fairly fine grid of points.)

One can see from the contour plot that measuring the two rate constants separately
would be a challenge. This is because the two exponentials have similar shapes, so

2‘Elephantness’ says that a wide range of behaviors can be exhibited by varying the parameters over small
ranges. ‘Sloppiness’ says that a wide range of parameters can yield approximately the same behavior. Both
reflect a skewness in the relation between parameters and model behavior.

3We’re assuming perfect data at all times, with uniform error bars.



increasing one decay rate and decreasing the other can almost perfectly compensate for
one another.

(b) If we assume both elements decay with the same decay constant γ = γ0 = γ1,
minimize the cost to find the optimum choice for γ. Where is this point on the contour
plot? Plot y0(t) and y(t) with this single-exponent best fit on the same graph, over
0 < t < 2. Do you agree that it would be difficult to distinguish these two fits?

This problem can become much more severe in higher dimensions. The banana-shaped
ellipses in your contour plot can become needle-like, with aspect ratios of more than a
thousand to one (about the same as a human hair). Following these thin paths down
to the true minima can be a challenge for multidimensional minimization programs.

(c) Find a method for storing and plotting the locations visited by your minimization
routine (values of (γ0, γ1) at which it evaluates C while searching for the minimum).
Starting from γ0 = 1, γ1 = 4, minimize the cost using as many methods as is convenient
within your programming environment, such as Nelder-Mead, Powell, Newton, Quasi-
Newton, conjugate gradient, Levenberg-Marquardt (nonlinear least squares). . . . (Try to
use at least one that does not demand derivatives of the function). Plot the evaluation
points on top of the contour plot of the cost for each method. Compare the number of
function evaluations needed for the different methods.


