
Problem Set 5: Eigenvalues and Fourier Transforms
Computational Physics

Physics 480/680
James Sethna; Due Monday, April 7

Last correction at March 17, 2014, 8:23 pm

Reading
Numerical Recipes chapters 11, 12, and 13, skimming the technical bits

Numerical Recipes section 20.7, skimming the technical bits
Fourier methods appendix, from Entropy, Order Parameters, and Complexity,

http://pages.physics.cornell.edu/sethna/StatMech/

This homework may be more challenging than most – especially for those who haven’t used
Fourier methods a lot in their other classes. The FFT is one of the most useful numerical
algorithms known; I don’t apologize for giving you a thorough introduction in how to use it.

Exercise 5.3 part (e) is optional for those in Physics 4480.

5.1 Fourier Series, Exponential Sine. (Computation) ©2
In this exercise, we’ll examine the Fourier series of the function

f(t) = exp(−6 sin(t)), (1)

with period T = 2π.

Periodic functions with period T can be expanded in a Fourier series,

f(t) =
∞∑

m=−∞

f̃(ωm) exp(−iωmt) (2)

where

f̃(ωm) =
1

T

∫ T

0

f(t) exp(iωmt)dt (3)

and ωm = 2πm/T with integer m. (Sometimes the Fourier series is written f̃m, omitting
the explicit frequency dependence.)

The FFT takes a series of N points y` and returns

ỹFFT
m =

N−1∑
`=0

y` exp(i2πm`/N). (4)

(Note: Often the FFT is divided by 1/
√

N .) Here m is the index of the complex array
passed back by the FFT routine, running from 0, . . . , N−1. The (discrete) N-term FFT

does a good job of estimating the (continuous) Fourier series if the Fourier coefficients
higher than n = N/2 are small.

(a) Take the FFT of the series of points y` = f(2π`/256) for ` = 0 . . . 255, with
f(t) = exp(−6 sin(t)) from eqn (1). (Don’t program eqn 4 yourself ! Use the FFT
package provided by your software environment.) After how many terms mmax are the
coefficients smaller than machine precision? Make a semi-log plot of the absolute val-
ues |ỹFFT

m | as a function of m. Note that many are below the machine precision. Are
they converging exponentially (as we expect for analytic functions), or even faster than
exponentially? Why are the terms m = 255, 254, 253, . . . large again?

To convert from the FFT to the Fourier series, one must carefully figure out the appro-
priate conversion factors. Notice that the FFT doesn’t know the period T , so one must
convert the sum to an integral. Remember also that the FFT may include a factor of
1/
√

N .

Converting FFTs to Fourier series. Write a general routine that converts the FFT
into the Fourier series ỹ(ωm) (eqn 2). It should be given both the time spacing ∆
and an array y(ti) for ti = 0, ∆, 2∆, . . . , (N − 1)∆. It should return (i) the array of
frequencies ω properly centered centered at ω = 0, (ii) the Fourier series ỹ(ω) calculated
from the FFT but scaled correctly and centered at zero, and (for convenience) (iii) the
aliasing frequency ω0 = 2π/∆. Again, to do this you’ll need to rescale the values ỹm and
rearrange and rescale the integers 0 ≤ m < N into the frequencies −ω0/2 < ωm ≤ ω0/2.

(b) Now, using your new routine on your data for f(t) = exp(−6 sin(t)) from part (a),

make a semi-log plot of the estimated Fourier series f̃(ω) versus ω. (Hint: Check your
rescaling of the values using the fact that the integral of f(t) is the period T times

f̃(ω = 0). Remember your answer
∫ 2π

0
f(t)dt = 422.446 from problem set two.)

Aliasing. The Fourier series f̃m runs over all integers m. The fast Fourier transform
(FFT) runs only over 0 < m < N . The contributions from higher Fourier components
are folded over into the low frequencies. Since the contributions grow small so quickly,
we need to do rather small numbers of points to illustrate the problem.

(c) Use your routine to plot the Fourier series taking N = 4, 8, and 16 equally-spaced
points f(ti) between zero and 2π. (Suggestion: I drew them with symbols, but connected
by dotted lines, to make it easier to visualize. I also used ω0 to label the curves in the
legend.) Note the peak at ω = 1, and how it converges to its true value. The change
in this peak when N changes from 4 to 8 should be noticable. What peak for N = 8
got ’eaten’ by the ω = 1 peak at N = 4? What peak got ’eaten’ going from N = 16 to
N = 8? (Hint: Remember how the error in the FFT involves1 ω0.)

Windowing. What happens if you get the period wrong? The Fourier series of
a periodic function develops ‘sidebands’ if it is sampled over a time not equal to a
multiple of its period.

1Don’t be confused by the fact that ω0 = N . f(t) in eqn 1 is a special case whose period is T = 2π, and
so ω0 = 2π/∆ = 2π/(T/N) = N .

(d) Sample f(t) from eqn (1) at N = 512 equally-spaced points spanning 32+ f periods
of the function (i.e., the time points are separated by ∆ = (2π)(32 + f)/512). Using
your routine, plot the Fourier series (both real and imaginary part) for f = 0. Why
are the Fourier series components now separated by zeros? Plot the same for f = 1/3.
What happened to the Fourier series peaks?

5.2 Diffusion: Finite Difference vs. Spectral. (Computation) ©3
The one-dimensional diffusion equation

∂u/∂t = D∂2u/∂x2 (5)

gives the evolution of a field u(x, t). This field is conserved, so
∫

u(x, t) dx is independent
of time. In this exercise, we’ll use various techniques to approximate the solution to
the diffusion equation with the periodic initial condition

u(x, 0) = exp(−6 sin(x)), (6)

with period L = 2π. We solve this in the interval [0, 2π] with periodic boundary
conditions, or equivalently in the infinite interval (−∞,∞), where we note the solution
is also periodic.

Finite Difference Method. Our first approach will be to approximate the contin-
uum differential equation on a spacetime grid, with time increments ∆t and spatial
increments ∆x:

(u(x, t + ∆t)− u(x, t))/∆t = D (u(x + ∆x, t)− 2u(x, t) + u(x−∆x)) /(∆x)2. (7)

Note that the time step is a forward difference, and the spatial increment is a symmetric
second difference. We’ve derived these before by matching the first terms in the Taylor
series for u.

(a) Solve eqn (7) for u(x, t+∆t). Will this approximation conserve u (preserve the sum∑
u(x+n∆x)), except for rounding errors? You can interpret the discrete equation (7)

as sharing a fraction of u(x) with its two neighbors in each time step. At what ∆tovershoot

will that share grow larger than one? How does this overshoot time step change when
∆x gets smaller by a factor of two?

Write a finite-difference routine that implements eqn. (7), with arguments u0, telapsed,
and dt. It should copy the initial condition u0(x) (don’t overwrite it!), step forward M =
telapsed/∆t time steps, and return the evolved approximation to u(x, telapsed). (Beware
of rounding errors here! Most programming languages will convert the floating point
number 31.999. . . into the integer 32 by default. I used M = int(round(telapsed/∆t)).)

(b) Using D = 0.8, N = 32, ∆x = L/N , and ∆t = ∆tovershoot/4, evolve the initial
condition from eqn (6) and plot the result for telapsed = 0.25, 0.5, 1, 2, 4, and 8. Save
the evolved points (both x and u) at telapsed = 8 for later comparisons. What happens if
you use ∆t > ∆tovershoot?

We often would like finer spatial resolution than N = 32 points.

(c) Time how long your routine takes as you repeatedly divide ∆x by two (finer inter-
polations) until it gets tediously slow (a minuite or so). How does the computer time
scale with ∆x?

Now let us implement a spectral method solution to the diffusion equation.

(d) Show that the spatial Fourier transform ũk(t) obeys the diffusion equation

∂ũk

∂t
= −Dk2ũk. (8)

so
ũk(t) = ũk(0) exp(−Dk2t). (9)

Write a spectral routine implements eqn (9), with arguments u0 and telapsed. It should
compute the FFT of u0, multiply by exp(−Dk2t), and do an inverse FFT (usually
called ifft), and return the real part. (Warning: computing the vector of points k2 is
tricky. Remember that the FFT returns values at k = 2πn/L, but with n growing and
then going negative: n = 0, 1, . . . , N/2−1, ±N/2, −N/2+1, . . . , −2, −1.) As part of
the debugging process, make sure that the inverse FFT has imaginary part near zero.

(e) Using D = 0.8, N = 4096, and ∆x = L/N , evolve the initial condition from eqn (6)
and plot the result for telapsed = 0.25, 0.5, 1, 2, 4, and 8. (The answers should roughly
agree with those of part (b).) How long would your finite-difference code have taken to
evolve the solution at this resolution? Store the points for telapsed = 8.

We saw in exercise (1) that the Fourier components of our initial condition rapidly go
to zero. There is no reason to solve for N = 4096 points: one could solve for many
fewer points in Fourier space and then evaluate the Fourier sum as finely as one wishes
(speeding things up even further). Let’s explore how the solution looks for N = 32
points, without writing the routine that interpolates between them.

(f) Using D = 0.8, N = 32, and ∆x = L/N , evolve the initial condition from eqn (6)
and plot the result for telapsed = 8. Plot these, along with your stored finite-difference
results from part (b) and your stored N = 4096 spectral points from part e. Zoom in,
and estimate the ratio of the errors for theN = 32 spectral method compared to that of
the N = 32 finite-difference method, assuming that the N = 4096 solution is exact.

Solving the diffusion equation for a periodic function here is illustrating much more
general and powerful techniques. This basic idea can be generalized to other boundary
conditions and to nonlinear equations (see Section 20.7 in NR). Also commonly used
are hybrid methods, like operator-splitting methods. These work in nonlinear problems
like turbulence when the spatial derivatives terms are linear;2 you alternate real-space
nonlinear term timesteps with Fourier-space gradient term timesteps. . .

2They are also useful for problems where the the term with the highest number of spatial derivatives
(which determines the maximum time step) is linear.

5.3 Sloppy Monomials.3 (Eigenvalues, Fitting) ©3
We have seen that the same function f(x) can be approximated in many ways. Indeed,
the same function can be fit in the same interval by the same type of function in
several different ways! For example, in the interval [0, 1], the function sin(2πx) can be
approximated (badly) by a fifth-order Taylor expansion, a Chebyshev polynomial, or a
least-squares (Legendre4) fit:

f(x) = sin(2πx)

≈ 0.000 + 6.283x + 0.000x2 − 41.342x3

+ 0.000x4 + 81.605x5 Taylor

≈ 0.007 + 5.652x + 9.701x2 − 95.455x3

+ 133.48x4 − 53.39x5 Chebyshev

≈ 0.016 + 5.410x + 11.304x2 − 99.637x3

+ 138.15x4 − 55.26x5 Legendre

It is not a surprise that the best fit polynomial differs from the Taylor expansion, since
the latter is not a good approximation. But it is a surprise that the last two polynomials
are so different. The maximum error for Legendre is less than 0.02, and for Chebyshev
is less than 0.01, even though the two polynomials differ by

Chebyshev − Legendre = (10)

− 0.009 + 0.242x− 1.603x2

+ 4.182x3 − 4.67x4 + 1.87x5

a polynomial with coefficients two hundred times larger than the maximum difference!

This flexibility in the coefficients of the polynomial expansion is remarkable. We can
study it by considering the dependence of the quality of the fit on the parameters.
Least-squares (Legendre) fits minimize a cost CLeg, the integral of the squared difference
between the polynomial and the function:

CLeg = (1/2)

∫ 1

0

(f(x)−
M∑

m=0

amxm)2 dx. (11)

How quickly does this cost increase as we move the parameters am away from their best-
fit values? Varying any one monomial coefficient will of course make the fit bad. But
apparently certain coordinated changes of coefficients don’t cost much – for example,
the difference between least-squares and Chebyshev fits given in eqn (10).

3Thanks to Joshua Waterfall, whose research is described here.
4The orthogonal polynomials used for least-squares fits on [-1,1] are the Legendre polynomials, assuming

continuous data points. Were we using orthogonal polynomials for this exercise, we would need to shift them
for use in [0,1].

How should we explore the dependence in arbitrary directions in parameter space? We
can use the eigenvalues of the Hessian to see how sensitive the fit is to moves along the
various eigenvectors. . .

(a) Note that the first derivative of the cost CLeg is zero at the best fit. Show that the
Hessian second derivative of the cost is

HLeg
mn =

∂2CLeg

∂am∂an

=
1

m + n + 1
, (12)

HLeg =

1 1/2 1/3 . . . 1/M

1/2 1/3 . . .
. . .

1/(M − 1) 1/M 1/(2M − 1)

 (13)

This Hessian is the Hilbert matrix,5 famous for being ill-conditioned (having a huge
range of eigenvalues). Tiny eigenvalues of HLeg correspond to directions in polynomial
space where the fit doesn’t change.

(b) Calculate the eigenvalues of the 6×6 Hessian for fifth-degree polynomial fits. Do
they span a large range? How big is the condition number?

(c) Calculate the eigenvalues of larger Hilbert matrices. At what size do your eigenvalues
seem contaminated by rounding errors? Plot them, in order of decreasing size, on a
semi-log plot to illustrate these rounding errors.

Notice from Eqn 12 that the dependence of the polynomial fit on the monomial coeffi-
cients is independent of the function f(x) being fitted. We can thus vividly illustrate
the sloppiness of polynomial fits by considering fits to the zero function f(x) ≡ 0. A
polynomial given by an eigenvector of the Hilbert matrix with small eigenvalue must
stay close to zero everywhere in the range [0, 1]. Let’s check this.

(d) Calculate the eigenvector corresponding to the smallest eigenvalue of the 6×6 matrix
HLeg with M = 5, checking to make sure its norm is one (so the coefficients are of
order one). Plot the corresponding fifth-degree polynomial in the range [0, 1]: does it
stay small everywhere in the interval? Plot it in a larger range [−1, 2] to contrast its
behavior inside and outside the fit interval.

This turns out to be a fundamental property that is shared with many other multipa-
rameter fitting problems. Many different terms are used to describe this property. The
fits are called ill-conditioned: the parameters an are not well constrained by the data.
The inverse problem is challenging: one cannot practically extract the parameters from
the behavior of the model. Or, as our group describes it, the fit is sloppy: only a few
directions in parameter space (eigenvectors corresponding to the largest eigenvalues)

5Note that our matrix starts with m = n = 0, the convention in C, C++, and Python for arrays and
matrices, but different from the traditional convention in mathematics where arrays and vectors start at one
rather than zero. Thus the usual definition of the Hilbert matrix would be Hmn = 1/(m + n− 1).

are constrained by the data, and there is a huge space of models (polynomials) varying
along sloppy directions that all serve well in describing the data.

At root, the problem with polynomial fits is that all monomials xn have similar shapes
on [0, 1]: they all start flat near zero and bend upward. Thus they can be traded for one
another; the coefficient of x4 can be lowered without changing the fit if the coefficients
of x3 and x5 are suitably adjusted to compensate. Indeed, if we change basis from
the coefficients an of the monomials xn to the coefficients `n of the orthogonal (shifted
Legendre) polynomials, the situation completely changes. The Legendre polynomials
are designed to be different in shape (orthogonal), and hence cannot be traded for one
another. Their coefficients `n are thus well determined by the data, and indeed the
Hessian for the cost CLeg in terms of this new basis is the identity matrix.

Numerical Recipes states a couple of times that using equally-spaced points gives ill-
conditioned fits. Will the Chebyshev fits, which emphasize the end-points of the inter-
val, give less sloppy coefficients? The Chebyshev polynomial for a function f (in the
limit where many terms are kept) minimizes a different cost: the squared difference
weighted by the extra factor 1/

√
x(1− x):

CCheb =

∫ 1

0

(f(x)−
∑M

m=0 cmxm)2√
x(1− x)

dx. (14)

One can show that the Hessian giving the dependence of CCheb on cm is

HCheb
mn =

∂2CCheb

∂cm∂cn

=
21−2(m+n)π(2(m + n)− 1)!

(m + n− 1)!(m + n)!
. (15)

with HCheb
00 = π (doing the integral explicitly, or taking the limit m, n→ 0).

(e) Calculate the eigenvalues of HCheb for fifth-degree polynomial fits.

So, sloppiness is not peculiar to least-squares fits; Chebyshev polynomial coefficients
are sloppy too.

