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When to use Monte Carlo Methods
Monte Carlo methods: A class of computational algorithms that rely on
repeated random sampling to compute results.
A few broad areas of applications are:

1. physics

2. chemistry

3. engineering

4. finance and risk analysis

When are MC methods likely to be the methods of choice?

1. When the problem is many-dimensional and approximations that
factor the problem into products of lower dimensional problems are
inaccurate.

2. A less important reason is that if one has a complicated geometry, a
MC algorithm may be simpler than other choices.

Obvious drawback of MC methods: There is a statistical error.
Sometimes there is a tradeoff between statistical error and systematic
error and one needs to find the best compromise.
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Quantum Monte Carlo

Quantum Monte Carlo: Monte Carlo methods used to solve the
Schrödinger Eq.
Some systems to which they have been applied are:

◮ strongly correlated systems (Hubbard, Anderson, t-J, ... models)

◮ quantum spin systems (Ising, Heisenberg, xy, ... models),

◮ liquid and solid helium, liquid-solid interface, droplets

◮ energy and response of homogeneous electron gas in 2-D and 3-D

◮ nuclear structure

◮ lattice gauge theory

◮ atomic clusters

◮ electronic structure calculations of atoms, molecules and solids

◮ both to pure states and finite temperature problems
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MC Simulations versus MC calculations
One can distinguish between two kinds of algorithms:

1. The system being studied is stochastic and the stochasticity of the
algorithm mimics the stochasticity of the actual system. e.g. study of
neutron transport and decay in nuclear reactor by following the
trajectories of a large number of neutrons. Such problems are suitable
for MC algorithms in a very obvious way.

2. Much more interesting are applications where the system being
studied is not stochastic, but nevertheless a stochastic algorithm is
the most efficient, or the most accurate, or the only feasible method
for studying the system. e.g. the solution of a PDE in a large number
of variables, e.g., the solution of the Schrödinger equation for an
N-electron system, with say N = 100 or 1000. (Note: The fact that
the wavefunction has a probabilistic interpretation has nothing to do
with the stochasticity of the algorithm. The wavefunction itself is
perfectly deterministic.)

I prefer to use the terminology that the former are MC simulations whereas
the latter are MC calculations but not everyone abides by that terminology.
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Early Recorded History of Monte Carlo
1777 Compte de Buffon: If a needle of length L is

thrown at random onto a plane ruled with straight lines a
distance d(d > L) apart, then the probability P of the

needle intersecting one of those lines is P = 2L
πd

.
Laplace: This could be used to compute π (inefficiently).

1930s First significant scientific application of MC: Enrico Fermi
used it for neutron transport in fissile material.
Segre: “Fermi took great delight in astonishing his Roman
colleagues with his ”too-good-to-believe” predictions of
experimental results.”

1940s Monte Carlo named by Nicholas Metropolis and Stanislaw Ulam

1953 Algorithm for sampling any probability density
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(generalized by Hastings in 1970)

1962,1974 First QMC calculations, Kalos, and, Kalos, Levesque, Verlet.
1965 First VMC calculations (of liquid He), Bill McMillan.
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Monte Carlo versus Deterministic Integration
methods

Deterministic Integration Methods:
Integration Error, ǫ, using Nint integration points:
1-dim Simpson rule: ǫ ∝ N−4

int
, (provided derivatives upto 4th exist)

d-dim Simpson rule: ǫ ∝ N
−4/d

int
, (provided derivatives upto 4th exist)

So, for a given error, N and so the computer time increases exponentially
with d , since N ∝ (1

ǫ )
d/4.

Monte Carlo:
ǫ ∝ N

−1/2
int

, independent of dimension!, according to the central limit
theorem provided that the variance of the integrand is finite.

Roughly, Monte Carlo becomes advantageous for d > 8.
For a many-body wavefunction d = 3N and can be a few thousand!
Remarkably, by the law of large numbers, even when the variance is
infinite, if the expected value is finite, the MC estimate will converge, but
more slowly than N−1/2.
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Monte Carlo Integration

I =

∫

V

f (x)dx = V 〈f 〉 ± V

√

〈f 2〉 − 〈f 〉2
N − 1

where 〈f 〉 =
1

N

N
∑

i

f (xi ), 〈f 2〉 =
1

N

N
∑

i

f 2(xi )

and the points xi are sampled uniformly in V .

Importance sampling

I =

∫

V

g(x)
f (x)

g(x)
dx = V

〈

f

g

〉

± V

√

√

√

√

√

〈

(

f
g

)2
〉

−
〈

f
g

〉2

N − 1

where the probability density function g(x) ≥ 0 and
∫

V
g(x)dx = 1.

If g(x) = 1/V in V then we recover original fluctuations but if g(x)
mimics f (x) then the fluctuations are much reduced. Need: a) g(x) ≥ 0,
b) know integral of g(x), and, c) be able to sample it.
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Illustration of Importance Sampling

f (x) is the function to be integrated. g(x) is a function that is “similar”
to f (x) and has the required properties: a) g(x) ≥ 0, b) we know integral
of g(x), and, c) we know how to sample it.

∫

f (x)dx can be evaluated
efficiently by sampling g(x) and averaging f (x)/g(x).
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Example of Importance Sampling to Calculate
Integrals More Efficiently

Suppose we wish to compute
∫ 1

0
dx f (x) =

∫ 1

0
dx

1√
x + x

(Exactly integrable, but pretend not)

Note that
∫ 1

0
dx(f (x))2 = ∞, (Barely, log divergence)

so if we estimate the integral by sampling points uniformly in [0, 1] then
this would be an infinite variance estimator and the error of the estimate
will go down more slowly than N−1/2. However, we can instead sample
points from the density

g(x) =
1

2x1/2

Now the variance of f (x)/g(x) is finite and the error decreases as N−1/2,
and, with a small prefactor. (Still would not use this in 1D.)
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Estimating Unbiased Variance from Samples

Let 〈f (x)〉 denote the population mean and f̄ (x) denote the sample mean.
Then
〈

∑

i f
2(xi )

N
−
[∑

i f (xi )

N

]2
〉

= 〈f 2〉 −
〈

∑

i f
2(xi ) +

∑

i ,i 6=j

∑

j f (xi )f (xj)

N2

〉

Since f (xi ) and f (xj) are independent

RHS =

(

1 − 1

N

)

〈f 2〉 − N(N − 1)

N2
〈f 〉2 =

N − 1

N
(〈f 2〉 − 〈f 〉2) =

N − 1

N
σ2

So, the sample estimate for σ2 is

σ2 ≈ N

N − 1

(

f̄ 2 − (f̄ )2
)

Loss of one degree of freedom because sample variance is computed relative
to sample mean rather than the true mean.
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Infinite variance estimators

When variance σ2 is finite, by the central limit theorem the average

FN =

∑N
i=1 f (xi )

N

converges for increasing N to a gaussian of width σN = σ/
√

N.
Since we have a gaussian distribution the probability of
Fn being within 1σN of the true mean is 68.3%
Fn being within 2σN of the true mean is 95.4%
Fn being within 3σN of the true mean is 99.7%.

What if the population variance σ2 = ∞ but we do not know that
beforehand? The computed sample variance will ofcourse always be finite.
So, how do we know if we expect the error of the sample mean to go
down as 1√

N
or more slowly?

The practical signature of an infinite variance estimator is that when one
computes σ from increasingly larger samples, the estimate of the variance
will have large upward jumps.
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Pseudo-random vs quasi-random numbers
Terrible misnomers!
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Reason why uniform grid is inefficient: Projection of N = nd points in d

dimensions onto a line maps nd−1 points onto a single point.
Reason why quasi-MC is more efficient than pseudo-MC in intermediate
dimensions: Quasi-MC avoids clusters and voids.

Cyrus J. Umrigar



Random Number Generators

Conventional random number generators generate random numbers
uniformly distributed on [0,1).
Of course no computer generated sequence of random numbers is truly
random. For one, the random numbers must repeat after a finite (though
hopefully very large) period. Also, if N bits are used to represent the
random numbers, then the number of different numbers generated can by
no larger than 2N .
Note however, that the period can be (and typically is for the better
generators) much larger than 2N .
Many different algorithms exist for generating random numbers, e.g.,
linear congruential generators (with or without an additive constant),
linear feedback shift register, lagged Fibonacci generator, XORshift
algorithm etc. They are typically subjected to a battery of statistical tests,
e.g., the Diehard tests of Marsaglia. Of course no random number
generator can pass all the tests that one can invent, but hopefully the
random number generator used does not have correlations that could
significantly impact the system being studied.
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Random Number Generators

For many MC calculations it is the short-ranged correlations that matter
most, but one has to think for each application what is important. For
example, if one were studying an Ising model with a power of two number
of spins, it would be problematic to have random number generator that
generated numbers with bits that repeat at an interval of 2N .
In the old days, there were quite a few calculations that produced
inaccurate results due to bad random number generators. For example,
the standard generators that came with UNIX and with C were badly
flawed. In the 1980s a special purpose computer was built at Santa
Barbara to study the 3-D Ising model. However, at first it failed to
reproduce the known exact results for the 2-D Ising model and that failure
was traced back to a faulty random number generator.
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Sampling random variables from nonuniform
probability density functions

We say x is sampled from f (x) if for any a and b in the domain,

Prob[a ≤ x ≤ b] =

∫ b

a

dx ′ f (x ′)

1) Transformation method (For many simple functions)
2) Rejection method (For more complicated functions)
3) Metropolis-Hastings method (For any function)

1) Transformation method: Perform a transformation y(x) on a uniform
deviate x , to get y sampled from desired probability density f (y).

|P(x)dx | = |P(y)dy | conservation of probability

If we have sampled x from a uniform density (P(x) = 1) and we wish y to
be sampled from the desired density, f (y), then setting P(y) = f (y),

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= f (y)

Solve for x(y) and invert to get y(x), i.e., invert the cumulative distrib.
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Examples of Transformation Method

Example 1: f (y) = ae−ay , y ∈ [0,∞)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= ae−ay , or, x = e−ay , i.e., y =
− ln(x)

a

Example 2: f (y) = y−1/2

2 , y ∈ [0, 1]

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
y−1/2

2
, or x = y1/2, i.e., y = x2

Note that in this case we are sampling a probability density that is infinite
at 0, but that is OK!
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Examples of Transformation Method

Example 3: f (y) = ye−y2/2, y ∈ [0,∞)
∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= ye−y2/2, or, x = e−y2/2, i.e., y =
√

−2 ln(x)

Example 4a: f (y) = e−y2/2
√

2π
, y ∈ (−∞,∞) (using Box-Müller method)

1

2π
e−(

y2
1
2

+
y2
2
2

) dx dy =

(

r e−
r2

2 dr

)(

dφ

2π

)

r =
√

−2 log(x1), φ = 2πx2

y1 =
√

−2 log(x1) cos(2πx2) , y2 =
√

−2 log(x1) sin(2πx2)

(y1 and y2

are uncorre-
lated)

Example 4b: f (y) ≈ e−y2/2
√

2π
, y ∈ (−∞,∞) (using central-limit theorem)

y = lim
N→∞

√

12

N

(

N
∑

i=1

xi −
N

2

)

≈
12
∑

i=1

xi − 6

(avoids sqrt, log, cos, sin,
but, misses tiny tails
beyond ±6)
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Rejection Method
We wish to sample f (x).
Find a function g(x) that can be sampled by another method (say
transformation) and that preferably mimics the behaviour of f (x).
Let C be an upper bound to the maximum value of f (x)/g(x).
Let C ≥ max(f (x)/g(x)).
Then f (x) is sampled by sampling g(x) and keep the sampled points with
probability

P =
f (x)

Cg(x)

The efficiency of the method is the fraction of the sampled points that are
kept.

Eff =

∫

dx
f (x)

Cg(x)
g(x)

=
1

C

Drawback: It is often hard to know C and a “safe” upperbound choice for
C may lead to low efficiency. An alternative is to associate weights with
the sampled points.
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Variational Monte Carlo
W. L. McMillan, Phys. Rev. 138, A442 (1965)

Monte Carlo is used to perform the many-dimensional integrals needed to
calculate quantum mechanical expectation values. e.g.

E =

∫

dRΨ∗
T
(R) H ΨT(R)

∫

dR |ψT(R)|2

=

∫

dR
|ψT(R)|2

∫

dR |ψT(R)|2
HΨT(R)

ΨT(R)

=
1

N

∑

i

HΨT(Ri )

ΨT(Ri )
=

1

N

∑

i

EL(Ri )

Energy is obtained as an arithmetic sum of the local energies EL(Ri )
evaluated for configurations sampled from |ψT(R)|2 using a generalization
of the Metropolis method. If ψT is an eigenfunction the EL(Ri ) do not
fluctuate. Accuracy of VMC depends crucially on the quality of ΨT(R).
Diffusion MC does better by projecting onto ground state.
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Three ingredients for accurate Variational Monte
Carlo

1. A method for sampling an arbitrary wave function
Metropolis-Hastings.

2. A functional form for the wave function that is capable of describing
the correct physics/chemistry. Beyond the scope of these lectures.

3. An efficient method for optimizing the parameters in the wave
functions. Beyond the scope of these lectures.
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Metropolis-Hastings Monte Carlo

Metropolis, Rosenbluth2, Teller2, JCP, 21 1087 (1953)

W.K. Hastings, Biometrika, 57 (1970)

Metropolis method originally used to sample the Boltzmann distribution.
This is still one of its more common uses.

General method for sampling any known discrete or continuous density.
(Other quantum Monte Carlo methods, e.g., diffusion MC, enable one to
sample densities that are not explicitly known but are the eigenstates of
known matrices or integral kernels.)

Metropolis-Hastings has serial correlations. Hence, direct sampling
methods preferable, but rarely possible for complicated densities in many
dimensions.
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Metropolis-Hastings Monte Carlo (cont)
A Markov chain is specified by two ingredients:
1) an initial state
2) a transition matrix M(~R ′|~R) (probability of transition ~R → ~R ′.)

M(~R ′|~R) ≥ 0,
∑

~R′

M(~R ′|~R) = 1. Stochastic matrix

To sample ρ(R), start from an arbitrary ~R and evolve the system by
repeated application of M that satisfies the stationarity condition:

∑

~R′

M(~R ′|~R) ρ(~R) =
∑

~R′

M(~R|~R ′) ρ(~R ′) = ρ(~R) ∀ ~R

i.e., ρ(R) is a right eigenvector of M with eigenvalue 1.
Stationarity ⇒ if we start with ρ, will continue to sample ρ.
Want more than that: any initial density should evolve to ρ.

lim
n→∞

Mn(~R ′|~R) δ(~R) = ρ(~R ′), ∀ ~R.

i.e., ρ should be the dominant right eigenvector.
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Metropolis-Hastings Monte Carlo (cont)

Want that any initial density should evolve to ρ.

lim
n→∞

Mn(~R ′|~R)δ(~R) = ρ(~R ′), ∀ ~R.

ρ should be the dominant right eigenvector.
In a finite space, necessary and sufficient condition on the Markov matrix
M is that transitions can be made in a finite number of steps between any
pair of states, that have nonzero probability. (ergodic or irreducible

matrix.)
Same general idea holds in continuous space (matrix → integral kernel)
but proofs are trickier.
In practice, length of Monte Carlo should be long enough that there be a
significant probability of the system making several transitions between
the neighborhoods of any pair of states that make a significant
contribution to the average. This ensures that states are visited with the
correct probability with only small statistical fluctuations. For example in
a double-well system many transitions between the 2 wells should occur,
but we can choose our proposal matrix to achieve this even if barrier
between wells is high.
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Metropolis-Hastings Monte Carlo (cont)
Construction of M

Impose detailed balance condition

M(~R ′|~R) ρ(~R) = M(~R|~R ′) ρ(~R ′)

Detailed balance more stringent than stationarity condition.
Detailed balance is not necessary but provides way to construct M.
Write elements of M as product of elements of a proposal matrix T and
an acceptance Matrix A,

M(~R ′|~R) = A(~R ′|~R) T (~R ′|~R)

M(~R ′|~R) and T (~R ′|~R) are stochastic matrices, but A(~R ′|~R) is not.
Detailed balance is now:

A(~R ′|~R) T (~R ′|~R) ρ(~R) = A(~R|~R ′) T (~R|~R ′) ρ(~R ′)

or
A(~R ′|~R)

A(~R|~R ′)
=

T (~R|~R ′) ρ(~R ′)

T (~R ′|~R) ρ(~R)
.
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Metropolis-Hastings Monte Carlo (cont)
Choice of Acceptance Matrix A

A(~R ′|~R)

A(~R|~R ′)
=

T (~R|~R ′) ρ(~R ′)

T (~R ′|~R) ρ(~R)
.

Infinity of choices for A. Any function

F

(

T (~R|~R ′) ρ(~R ′)

T (~R ′|~R) ρ(~R)

)

= A(~R ′|~R)

for which F (x)/F (1/x) = x and 0 ≤ F (x) ≤ 1 will do.
Choice of Metropolis et al. F (x) = min{1, x}, maximizes the acceptance:

A(~R ′|~R) = min

{

1,
T (~R|~R ′) ρ(~R ′)

T (~R ′|~R) ρ(~R)

}

.

Other less good choices for A(~R ′|~R) have been made, e.g. F (x) = x
1+x

A(~R ′|~R) =
T (~R|~R ′) ρ(~R ′)

T (~R|~R ′) ρ(~R ′) + T (~R ′|~R) ρ(~R)
.

Metropolis: T (~R|~R ′) = T (~R ′|~R), Hastings:T (~R|~R ′) 6= T (~R ′|~R)
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Metropolis-Hastings Monte Carlo (cont)

Choice of Proposal Matrix T

So, the optimal choice for the acceptance matrix A(~R ′|~R) is simple and
known.
However, there is considerable scope for using one’s ingenuity to come up
with good proposal matrices, T (~R ′|~R), that allow one to make large moves
with large acceptances, in order to make the autocorrelation time is small.
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Metropolis-Hastings Monte Carlo (cont)
Some Observations about Metropolis Method

1. To sample states with relative density ρ it is not necessary to know
the normalization of ρ. Metropolis automatically samples ρ/

∑

ρ.

2. The variance of the estimate for the expectation value 〈X 〉 is given by

Tcorr

N − 1





∑

X (~R)2

N
−
(

∑

X (~R)

N

)2


 .

That is, the effective number of configurations Neff is smaller than N

by a factor of Tcorr, which we define to be the autocorrelation time.
(Tcorr is related to integrated autocorrelation time,
Tcorr = 1 + 2tcorr.)

3. The rate of convergence to the desired density and the
autocorrelation time of estimates of observables is governed by the
sub-dominant eigenvalues of M. In practice reduce Tcorr by inventing
large moves that have large acceptance probabilities.
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Metropolis-Hastings Monte Carlo (cont)

Some Observations about Metropolis Method

4. Folklore: when one can choose from a range of proposal matrices, the
optimal one has an average acceptance ratio close to 1/2.
In fact the optimal choice may have an average acceptance that is
anywhere between zero and one.
I have found instances where the optimum is as small as 0.2 or as
large as 0.9.
A much better criterion is to maximize the rate at which the system
diffuses through configuration space 〈A(~R ′|~R)(~R ′ − ~R)2〉.
The real measure of goodness is of course to minimize the
autocorrelation time for the observables of interest.
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Metropolis-Hastings Monte Carlo (cont)

Some Observations about Metropolis Method

5. If M1,M2, · · · ,Mn are Markov matrices that satisfy the stationarity
condition.
Combine these to construct a compound transition matrix M that
also satisfies the stationarity condition. One often employs
elementary transition matrices Mi that are non-ergodic to construct a
compound transition matrices M that is ergodic.
Two sorts of combinations are often useful:

1 M = Πn
i=1Mi . Sequential updating. e.g. Ising spins on lattice sites or

the electrons in electronic structure.
2 M =

∑n

i=1 ciMi , ci ≥ 0 (independent of the current state) and
∑n

i=1 ci = 1. Choose the transitions Mi randomly with probabilities ci .
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Metropolis-Hastings Monte Carlo (cont)

Some Observations about Metropolis Method

7. The heat bath algorithm can be considered to be a special case of the
(generalized) Metropolis method. T (~R ′|~R) ∝ ρ(~R ′) for only a small
set of accessible states in a domain D(~R) in the neighborhood of ~R:

T (~R ′|~R) =

{

ρ(~R ′)/
∑

ρ(~R ′) if ~R ′ ǫ D(~R)

0 otherwise

If the sum over the accessible states from ~R and ~R ′ is the same, the
acceptance is unity. The heat bath algorithm frequently used for
lattice models where the normalization constant can be easily
computed, e.g. Potts model.
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Metropolis-Hastings Monte Carlo (cont)
Autocorrelation time

N Monte Carlo steps = Nb blocks × Ns steps/block
N measurements of EL

Ē = average of EL

σ = rms fluctuations of individual EL

σb = rms fluctuations of block averages of EL

Effectively, N/Tcorr independent measurements of EL

Define Tcorr as

err(Ē ) =
σ

√

Nb × Ns

√

Tcorr =
σb√
Nb

⇒ Tcorr = Ns

(σb

σ

)2 Choose Ns ≫ Tcorr, say, 100 Tcorr.
If Ns ≈ 10Tcorr, Tcorr underest. ≈ 10%.
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