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Why are Fourier methods important? Why is it so useful for us to
transform functions of time and space y(x, t) into functions of frequency
and wavevector ỹ(k,ω)?

• Humans hear frequencies. The human ear analyzes pressure varia-
tions in the air into different frequencies. Large frequencies ω are
perceived as high pitches; small frequencies are low pitches. The ear,
very roughly, does a Fourier transform of the pressure P (t) and trans-
mits |P̃ (ω)|2 to the brain.1 1Actually, this is how the ear seems to

work, but not how it does work. First,
the signal to the brain is time depen-
dent, with the tonal information chang-
ing as a word or tune progresses; it is
more like a wavelet transform, giving
the frequency content in various time
slices. Second, the phase information
in P̃ is not completely lost; power and
pitch are the primary signal, but the
relative phases of different pitches are
also perceptible. Third, experiments
have shown that the human ear is very
nonlinear in its mechanical response.

• Diffraction experiments measure Fourier components. Many experi-
mental methods diffract waves (light, X-rays, electrons, or neutrons)
off of materials (Section 10.2). These experiments typically probe the
absolute square of the Fourier amplitude of whatever is scattering the
incoming beam.

• Common mathematical operations become simpler in Fourier space.
Derivatives, correlation functions, and convolutions can be written as
simple products when the functions are Fourier transformed. This has
been important to us when calculating correlation functions (eqn 10.4),
summing random variables (Exercises 1.2 and 12.11), and calculating
susceptibilities (eqns 10.30, 10.39, and 10.53, and Exercise 10.9). In
each case, we turn a calculus calculation into algebra.

• Linear differential equations in translationally-invariant systems have
solutions in Fourier space.2 We have used Fourier methods for solving 2Translation invariance in Hamiltonian

systems implies momentum conserva-
tion. This is why in quantum mechan-
ics Fourier transforms convert position-
space wavefunctions into momentum-
space wavefunctions—even for systems
which are not translation invariant.

the diffusion equation (Section 2.4.1), and more broadly to solve for
correlation functions and susceptibilities (Chapter 10).

In Section A.1 we introduce the conventions typically used in physics
for the Fourier series, Fourier transform, and fast Fourier transform. In
Section A.2 we derive their integral and differential properties. In Sec-
tion A.3, we interpret the Fourier transform as an orthonormal change-
of-basis in function space. And finally, in Section A.4 we explain why
Fourier methods are so useful for solving differential equations by ex-
ploring their connection to translational symmetry.

A.1 Fourier conventions

Here we define the Fourier series, the Fourier transform, and the fast
Fourier transform, as they are commonly defined in physics and as they
are used in this text.
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The Fourier series for functions of time, periodic with period T , is

ỹm =
1
T

∫ T

0
y(t) exp(iωmt) dt, (A.1)

where ωm = 2πm/T , with integer m. The Fourier series can be re-
summed to retrieve the original function using the inverse Fourier series:

y(t) =
∞∑

m=−∞
ỹm exp(−iωmt). (A.2)

Fourier series of functions in space are defined with the opposite sign
convention3 in the complex exponentials. Thus in a three-dimensional3This inconsistent convention allows

waves of positive frequency to propa-
gate forward rather than backward. A
single component of the inverse trans-
form, eik·xe−iωt = ei(k·x−ωt) propa-
gates in the +k direction with speed
ω/|k|; had we used a +i for Fourier
transforms in both space and time
ei(k·x+ωt) would move backward (along
−k) for ω > 0.

box of volume V = L ×L×L with periodic boundary conditions, these
formulæ become

ỹk =
1
V

∫
y(x) exp(−ik · x) dV, (A.3)

and
y(x) =

∑

k

ỹk exp(ik · x), (A.4)

where the k run over a lattice of wavevectors

k(m,n,o) = [2πm/L, 2πn/L, 2πo/L] (A.5)

in the box.
The Fourier transform is defined for functions on the entire infinite

line:
ỹ(ω) =

∫ ∞

−∞
y(t) exp(iωt) dt, (A.6)

where now ω takes on all values.4 We regain the original function by

4Why do we divide by T or L for the
series and not for the transform? Imag-
ine a system in an extremely large box.
Fourier series are used for functions
which extend over the entire box; hence
we divide by the box size to keep them
finite as L → ∞. Fourier transforms
are usually used for functions which
vanish quickly, so they remain finite as
the box size gets large.
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Fig. A.1 Approximating the in-
tegral as a sum. By approximat-
ing the integral

∫
ỹ(ω) exp(iωt) dω as a

sum over the equally-spaced points ωm,∑
m ỹ(ω) exp(iωmt)∆ω, we can con-

nect the formula for the Fourier trans-
form to the formula for the Fourier
series, explaining the factor 1/2π in
eqn A.7.

doing the inverse Fourier transform:

y(t) =
1
2π

∫ ∞

−∞
ỹ(ω) exp(−iωt) dω. (A.7)

This is related to the inverse Fourier series by a continuum limit (Fig.
A.1):

1
2π

∫
dω ≈ 1

2π

∑

ω

∆ω =
1
2π

∑

ω

2π
T

=
1
T

∑

ω

, (A.8)

where the 1/T here compensates for the factor of T in the definitions
of the forward Fourier series. In three dimensions the Fourier transform
formula A.6 is largely unchanged,

ỹ(k) =
∫

y(x) exp(−ik · x) dV, (A.9)

while the inverse Fourier transform gets the cube of the prefactor:

y(x) =
1

(2π)3

∫ ∞

−∞
ỹ(k) exp(ik · x) dk. (A.10)
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The fast Fourier transform (FFT) starts with N equally-spaced data
points y", and returns a new set of complex numbers ỹFFT

m :

ỹFFT
m =

N−1∑

"=0

y" exp(i2πm#/N), (A.11)

with m = 0, . . . , N − 1. The inverse of the FFT is given by

y" =
1
N

N−1∑

m=0

ỹFFT
m exp(−i2πm#/N). (A.12)

The FFT essentially samples the function y(t) at equally-spaced points
t" = #T/N for # = 0, . . . , N − 1:

ỹFFT
m =

N−1∑

"=0

y" exp(iωmt"). (A.13)

It is clear from eqn A.11 that ỹFFT
m+N = ỹFFT

m , so the fast Fourier trans-
form is periodic with period ωN = 2πN/T . The inverse transform can
also be written

y" =
1
N

N/2∑

m=−N/2+1

ỹFFT
m exp(−iωmt"), (A.14)

where we have centered5 the sum ωm at ω = 0 by using the periodicity.6

5If N is odd, to center the FFT the sum
should be taken over −(N−1)/2 ≤ m ≤
(N − 1)/2.

6Notice that the FFT returns the neg-
ative ω Fourier coefficients as the last
half of the array, m = N/2 + 1, N/2 +
2, . . . . (This works because −N/2 + j
and N/2+j differ by N , the periodicity
of the FFT.) One must be careful about
this when using Fourier transforms
to solve calculus problems numeri-
cally. For example, to evolve a density
ρ(x) under the diffusion equation (Sec-
tion 2.4.1) one must multiply the first
half of the array ρ̃m by exp(−Dk2

mt) =
exp(−D[m(2π/L)]2t) but multiply the
second half by exp(−D(K − km)2t) =
exp(−D[(N − m)(2π/L)]2t).

Often the values y(t) (or the data points y") are real. In this case,
eqns A.1 and A.6 show that the negative Fourier amplitudes are the
complex conjugates of the positive ones: ỹ(ω) = ỹ∗(−ω). Hence for real
functions the real part of the Fourier amplitude will be even and the
imaginary part will be odd.7

7This allows one to write slightly faster
FFTs specialized for real functions.
One pays for the higher speed by an
extra programming step unpacking the
resulting Fourier spectrum.

The reader may wonder why there are so many versions of roughly
the same Fourier operation.

(1) The function y(t) can be defined on a finite interval with periodic
boundary conditions on (0, T ) (series, FFT) or defined in all space
(transform). In the periodic case, the Fourier coefficients are defined
only at discrete wavevectors ωm = 2πm/T consistent with the pe-
riodicity of the function; in the infinite system the coefficients are
defined at all ω.

(2) The function y(t) can be defined at a discrete set of N points tn =
n∆t = nT/N (FFT), or at all points t in the range (series, trans-
form). If the function is defined only at discrete points, the Fourier
coefficients are periodic with period ωN = 2π/∆t = 2πN/T .8

8There is one more logical possibility: a
discrete set of points that fill all space;
the atomic displacements in an infi-
nite crystal is the classic example. In
Fourier space, such a system has con-
tinuous k, but periodic boundary con-
ditions at ±K/2 = ±π/a (the edges of
the Brillouin zone).

There are several arbitrary choices made in defining these Fourier
methods, that vary from one field to another.

• Some use the notation j =
√
−1 instead of i.
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• More substantively, some use the complex conjugate of our formulæ,
substituting −i for i in the time or space transform formulæ. This
alternative convention makes no change for any real quantity.99The real world is invariant under the

transformation i ↔ −i, but complex
quantities will get conjugated. Swap-
ping i for −i in the time series formulæ,
for example, would make χ′′(ω) =
−Im[χ(ω)] in eqn 10.31 and would
make χ analytic in the lower half-plane
in Fig. 10.12.

• Some use a 1/
√

T and 1/
√

2π factor symmetrically on the Fourier and
inverse Fourier operations.

• Some use frequency and wavelength (f = 2πω and λ = 2π/k) instead
of angular frequency ω and wavevector k. This makes the transform
and inverse transform more symmetric, and avoids some of the pref-
actors.

Our Fourier conventions are those most commonly used in physics.

A.2 Derivatives, convolutions, and
correlations

The important differential and integral operations become multiplica-
tions in Fourier space. A calculus problem in t or x thus becomes an
algebra exercise in ω or k.

Integrals and derivatives. Because (d/dt) e−iωt = −iωeiωt, the
Fourier coefficient of the derivative of a function y(t) is −iω times the
Fourier coefficient of the function:

dy/dt =
∑

ỹm (−iωm exp(−iωmt)) =
∑

(−iωmỹm) exp(−iωmt),
(A.15)

so
d̃y

dt

∣∣∣∣∣
ω

= −iωỹω. (A.16)

This holds also for the Fourier transform and the fast Fourier transform.
Since the derivative of the integral gives back the original function, the
Fourier series for the indefinite integral of a function y is thus given by
dividing by −iω:

˜∫
y(t) dt =

ỹω

−iω
= i

ỹω

ω
(A.17)

except at ω = 0.10
10Either the mean ỹ(ω = 0) is zero or it
is non-zero. If the mean of the function
is zero, then ỹ(ω)/ω = 0/0 is undefined
at ω = 0. This makes sense; the indef-
inite integral has an arbitrary integra-
tion constant, which gives its Fourier
series an arbitrary value at ω = 0. If
the mean of the function ȳ is not zero,
then the integral of the function will
have a term ȳ(t − t0). Hence the inte-
gral is not periodic and has no Fourier
series. (On the infinite interval the in-
tegral has no Fourier transform because
it is not in L2.)

These relations are invaluable in the solution of many linear partial
differential equations. For example, we saw in Section 2.4.1 that the
diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2
(A.18)

becomes manageable when we Fourier transform x to k:

∂ρ̃k

∂t
= −Dk2ρ̃, (A.19)

ρ̃k(t) = ρk(0) exp(−Dk2t). (A.20)

Correlation functions and convolutions. The absolute square of
the Fourier transform11 |ỹ(ω)|2 is given by the Fourier transform of the

11The absolute square of the Fourier
transform of a time signal is called the
power spectrum.
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correlation function C(τ) = 〈y(t)y(t + τ)〉:

|ỹ(ω)|2 = ỹ(ω)∗ỹ(ω) =
∫

dt′ e−iωt′y(t′)
∫

dt eiωty(t)

=
∫

dt dt′ eiω(t−t′)y(t′)y(t) =
∫

dτ eiωτ

∫
dt′ y(t′)y(t′ + τ)

=
∫

dτ eiωτT 〈y(t)y(t + τ)〉 = T

∫
dτ eiωτC(τ)

= T C̃(ω), (A.21)

where T is the total time t during which the Fourier spectrum is being
measured. Thus diffraction experiments, by measuring the square of the
k-space Fourier transform, give us the spatial correlation function for
the system (Section 10.2).

The convolution12 h(z) of two functions f(x) and g(y) is defined as 12Convolutions show up in sums and
Green’s functions. The sum z = x + y
of two random vector quantities with
probability distributions f(x) and g(y)
has a probability distribution given by
the convolution of f and g (Exer-
cise 1.2). An initial condition f(x, t0)
propagated in time to t0 + τ is given
by convolving with a Green’s function
g(y, τ) (Section 2.4.2).

h(z) =
∫

f(x)g(z − x) dx. (A.22)

The Fourier transform of the convolution is the product of the Fourier
transforms. In three dimensions,13

13The convolution and correlation the-
orems are closely related; we do convo-
lutions in time and correlations in space
to illustrate both the one-dimensional
and vector versions of the calculation.

f̃(k)g̃(k) =
∫

e−ik·xf(x) dx
∫

e−ik·yg(y) dy

=
∫

e−ik·(x+y)f(x)g(y) dxdy =
∫

e−ik·z dz
∫

f(x)g(z − x) dx

=
∫

e−ik·zh(z) dz = h̃(k). (A.23)

A.3 Fourier methods and function space

There is a nice analogy between the space of vectors r in three dimensions
and the space of functions y(t) periodic with period T , which provides
a simple way of thinking about Fourier series. It is natural to define our
function space to including all complex functions y(t). (After all, we
want the complex Fourier plane-waves e−iωmt to be in our space.) Let
us list the following common features of these two spaces.

• Vector space. A vector r = (r1, r2, r3) in R3 can be thought of as a
real-valued function on the set {1, 2, 3}. Conversely, the function y(t)
can be thought of as a vector with one complex component for each
t ∈ [0, T ).
Mathematically, this is an evil analogy. Most functions which have
independent random values for each point t are undefinable, unin-
tegrable, and generally pathological. The space becomes well de-
fined if we confine ourselves to functions y(t) whose absolute squares
|y(t)|2 = y(t)y∗(t) can be integrated. This vector space of functions
is called L2.14

14More specifically, the Fourier trans-
form is usually defined on L2[R], and
the Fourier series is defined on L2[0, T ].
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• Inner product. The analogy to the dot product of two three-dimen-
sional vectors r · s = r1s1 + r2s2 + r3s3 is an inner product between
two functions y and z:

y · z =
1
T

∫ T

0
y(t)z∗(t) dt. (A.24)

You can think of this inner product as adding up all the products ytz∗t
over all points t, except that we weight each point by dt/T .

• Norm. The distance between two three-dimensional vectors r and s
is given by the norm of the difference |r − s|. The norm of a vector
is the square root of the dot product of the vector with itself, so
|r− s| =

√
(r − s) · (r − s). To make this inner product norm work in

function space, we need to know that the inner product of a function
with itself is never negative. This is why, in our definition A.24, we
took the complex conjugate of z(t). This norm on function space is
called the L2 norm:

||y||2 =

√
1
T

∫ T

0
|y(t)|2 dt. (A.25)

Thus our restriction to square-integrable functions makes the norm of
all functions in our space finite.1515Another important property is that

the only vector whose norm is zero is
the zero vector. There are many func-
tions whose absolute squares have in-
tegral zero, like the function which is
zero except at T/2, where it is one, and
the function which is zero on irrationals
and one on rationals. Mathematicians
finesse this difficulty by defining the
vectors in L2 not to be functions, but
rather to be equivalence classes of func-
tions whose relative distance is zero.
Hence the zero vector in L2 includes all
functions with norm zero.

• Basis. A natural basis for R3 is given by the three unit vectors x̂1, x̂2,
x̂3. A natural basis for our space of functions is given by the functions
f̂m = e−iωmt, with ωm = 2πm/T to keep them periodic with period T .

• Orthonormality. The basis in R3 is orthonormal, with x̂i · x̂j equal-
ing one if i = j and zero otherwise. Is this also true of the vectors in
our basis of plane waves? They are normalized:

||f̂m||22 =
1
T

∫ T

0
|e−iωmt|2 dt = 1. (A.26)

They are also orthogonal, with

f̂m · f̂n =
1
T

∫ T

0
e−iωmteiωnt dt =

1
T

∫ T

0
e−i(ωm−ωn)t dt

=
1

−i(ωm − ωn)T
e−i(ωm−ωn)t

∣∣∣
T

0
= 0 (A.27)

(unless m = n) since e−i(ωm−ωn)T = e−i2π(m−n) = 1 = e−i0.
• Coefficients. The coefficients of a three-dimensional vector are given

by taking dot products with the basis vectors: rn = r·x̂n. The analogy
in function space gives us the definition of the Fourier coefficients,
eqn A.1:

ỹm = y · f̂m =
1
T

∫ T

0
y(t) exp(iωmt) dt. (A.28)

• Completeness. We can write an arbitrary three-dimensional vector
r by summing the basis vectors weighted by the coefficients: r =
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∑
rnx̂n. The analogy in function space gives us the formula A.2 for

the inverse Fourier series:

y =
∞∑

m=−∞
ỹmf̂m,

y(t) =
∞∑

m=−∞
ỹm exp(−iωmt).

(A.29)

One says that a basis is complete if any vector can be expanded in
that basis. Our functions f̂m are complete in L2.16 16You can imagine that proving they

are complete would involve showing
that there are no functions in L2 which
are ‘perpendicular’ to all the Fourier
modes. This is the type of tough ques-
tion that motivates the mathematical
field of real analysis.

Our coefficient eqn A.28 follows from our completeness eqn A.29 and
orthonormality:

ỹ"
?= y · f̂" =

(
∑

m

ỹmf̂m

)
· f̂"

=
∑

m

ỹm

(
f̂m · f̂"

)
= ỹ" (A.30)

or, writing things out,

ỹ"
?=

1
T

∫ T

0
y(t)eiω!t dt

=
1
T

∫ T

0

(
∑

m

ỹme−iωmt

)
eiω!t dt

=
∑

m

ỹm

(
1
T

∫ T

0
e−iωmteiω!t dt

)
= ỹ". (A.31)

Our function space, together with our inner product (eqn A.24), is a
Hilbert space (a complete inner product space).

A.4 Fourier and translational symmetry

Fig. A.2 The mapping T∆ takes
function space into function space,
shifting the function to the right by
a distance ∆. For a physical system
that is translation invariant, a solution
translated to the right is still a solution.

Why are Fourier methods so useful? In particular, why are the solutions
to linear differential equations so often given by plane waves: sines and
cosines and eikx?17 Most of our basic equations are derived for systems

17It is true, we are making a big deal
about what is usually called the separa-
tion of variables method. But why does
separation of variables so often work,
and why do the separated variables so
often form sinusoids and exponentials?

with a translational symmetry. Time-translational invariance holds for
any system without an explicit external time-dependent force; invariance
under spatial translations holds for all homogeneous systems.

Why are plane waves special for systems with translational invariance?
Plane waves are the eigenfunctions of the translation operator. Define
T∆, an operator which takes function space into itself, and acts to shift
the function a distance ∆ to the right:18

18That is, if g = T∆{f}, then g(x) =
f(x − ∆), so g is f shifted to the right
by ∆.

T∆{f}(x) = f(x − ∆). (A.32)

Any solution f(x, t) to a translation-invariant equation will be mapped
by T∆ onto another solution. Moreover, T∆ is a linear operator (trans-
lating the sum is the sum of the translated functions). If we think of the
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translation operator as a big matrix acting on function space, we can
ask for its eigenvalues19 and eigenvectors (or eigenfunctions) fk:19You are familiar with eigenvectors of

3 × 3 symmetric matrices M , which
transform into multiples of themselves
when multiplied by M , M · en = λnen.
The translation T∆ is a linear operator
on function space just as M is a linear
operator on R3.

T∆{fk}(x) = fk(x − ∆) = λkfk(x). (A.33)

This equation is solved by our complex plane waves fk(x) = eikx, with
λk = e−ik∆.20

20The real exponential eAx is also an
eigenstate, with eigenvalue e−A∆. This
is also allowed. Indeed, the diffusion
equation is time-translation invariant,
and it has solutions which decay ex-
ponentially in time (e−ωkteikx, with
ωk = Dk2). Exponentially decaying
solutions in space also arise in some
translation-invariant problems, such as
quantum tunneling and the penetration
of electromagnetic radiation into met-
als.

Why are these eigenfunctions useful? The time evolution of an eigen-
function must have the same eigenvalue λ! The argument is something
of a tongue-twister: translating the time-evolved eigenfunction gives the
same answer as time evolving the translated eigenfunction, which is time
evolving λ times the eigenfunction, which is λ times the time-evolved
eigenfunction.21

21Written out in equations, this sim-
ple idea is even more obscure. Let Ut

be the time-evolution operator for a
translationally-invariant equation (like
the diffusion equation of Section 2.2).
That is, Ut{ρ} evolves the function
ρ(x, τ) into ρ(x, τ + t). (Ut is not trans-
lation in time, but evolution in time.)
Because our system is translation in-
variant, translated solutions are also
solutions for translated initial condi-
tions: T∆{Ut{ρ}} = Ut{T∆{ρ}}. Now,
if ρk(x, 0) is an eigenstate of T∆ with
eigenvalue λk, is ρk(x, t) = Ut{ρk}(x)
an eigenstate with the same eigenvalue?
Yes indeed:

T∆{ρk(x, t)} = T∆{Ut{ρk(x, 0)}}
= Ut{T∆{ρk(x, 0)}}
= Ut{λkρk(x, 0)}
= λkUt{ρk(x, 0)}

= λkρk(x, t) (A.34)

because the evolution law Ut is linear.

The fact that the different eigenvalues do not mix under time evolu-
tion is precisely what made our calculation work; time evolving A0eikx

had to give a multiple A(t)eikx since there is only one eigenfunction of
translations with the given eigenvalue. Once we have reduced the par-
tial differential equation to an ordinary differential equation for a few
eigenstate amplitudes, the calculation becomes feasible.

Quantum physicists will recognize the tongue-twister above as a state-
ment about simultaneously diagonalizing commuting operators: since
translations commute with time evolution, one can find a complete set
of translation eigenstates which are also time-evolution solutions. Math-
ematicians will recognize it from group representation theory: the solu-
tions to a translation-invariant linear differential equation form a repre-
sentation of the translation group, and hence they can be decomposed
into irreducible representations of that group. These approaches are ba-
sically equivalent, and very powerful. One can also use these approaches
for systems with other symmetries. For example, just as the invariance
of homogeneous systems under translations leads to plane-wave solutions
with definite wavevector k, it is true that:

• the invariance of isotropic systems (like the hydrogen atom) under the
rotation group leads naturally to solutions involving spherical harmon-
ics with definite angular momenta # and m;

• the invariance of the strong interaction under SU(3) leads naturally
to the ‘8-fold way’ families of mesons and baryons; and

• the invariance of the Universe under the Poincaré group of space–
time symmetries (translations, rotations, and Lorentz boosts) leads
naturally to particles with definite mass and spin!
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Exercises
We begin with three Fourier series exercises, Sound wave,
Fourier cosines (numerical), and Double sinusoids. We
then explore Fourier transforms with Fourier Gaussians
(numerical) and Uncertainty, focusing on the effects of
translating and scaling the width of the function to be
transformed. Fourier relationships analyzes the normal-
ization needed to go from the FFT to the Fourier se-
ries, and Aliasing and windowing explores two common
numerical inaccuracies associated with the FFT. White
noise explores the behavior of Fourier methods on ran-
dom functions. Fourier matching is a quick, visual test of
one’s understanding of Fourier methods. Finally, Gibbs
phenomenon explores what happens when you torture a
Fourier series by insisting that smooth sinusoids add up
to a function with a jump discontinuity.

(A.1) Sound wave. ©1
A musical instrument playing a note of fre-
quency ω1 generates a pressure wave P (t) pe-
riodic with period 2π/ω1: P (t) = P (t +
2π/ω1). The complex Fourier series of this wave
(eqn A.2) is zero except for m = ±1 and ±2, cor-
responding to the fundamental ω1 and the first
overtone. At m = 1, the Fourier amplitude is
2− i, at m = −1 it is 2 + i, and at m = ±2 it is
3. What is the pressure P (t):
(A) exp ((2 + i)ω1t) + 2 exp (3ω1t),
(B) exp (2ω1t) exp (iω1t)× 2 exp (3ω1t),
(C) cos 2ω1t− sinω1t + 2 cos 3ω1t,
(D) 4 cosω1t− 2 sinω1t + 6 cos 2ω1t,
(E) 4 cosω1t + 2 sinω1t + 6 cos 2ω1t?

(A.2) Fourier cosines. (Computation) ©2
In this exercise, we will use the computer to il-
lustrate features of Fourier series and discrete
fast Fourier transforms using sinusoidal waves.
Download the Fourier software, or the relevant
hints files, from the computer exercises section
of the book web site [129].22

First, we will take the Fourier series of periodic
functions y(x) = y(x + L) with L = 20. We
will sample the function at N = 32 points, and
use a FFT to approximate the Fourier series.
The Fourier series will be plotted as functions

of k, at −kN/2, . . . , kN/2−2, kN/2−1. (Remem-
ber that the negative m points are given by the
last half of the FFT.)
(a) Analytically (that is, with paper and pencil)
derive the Fourier series ỹm in this interval for
cos(k1x) and sin(k1x). Hint: They are zero ex-
cept at the two values m = ±1. Use the spatial
transform (eqn A.3).
(b) What spacing δk between k-points km do you
expect to find? What is kN/2? Evaluate each an-
alytically as a function of L and numerically for
L = 20.
Numerically (on the computer) choose a cosine
wave A cos(k(x − x0)), evaluated at 32 points
from x = 0 to 20 as described above, with
k = k1 = 2π/L, A = 1, and x0 = 0. Exam-
ine its Fourier series.
(c) Check your predictions from part (a) for the
Fourier series for cos(k1x) and sin(k1x). Check
your predictions from part (b) for δk and for
kN/2.
Decrease k to increase the number of wave-
lengths, keeping the number of data points
fixed. Notice that the Fourier series looks fine,
but that the real-space curves quickly begin
to vary in amplitude, much like the patterns
formed by beating (superimposing two waves of
different frequencies). By increasing the num-
ber of data points, you can see that the beat-
ing effect is due to the small number of points
we sample. Even for large numbers of sampled
points N , though, beating will still happen at
very small wavelengths (when we get close to
kN/2). Try various numbers of waves m up to
and past m = N/2.

(A.3) Double sinusoid. ©2
Which picture represents the spatial Fourier
series (eqn A.4) associated with the function
f(x) = 3 sin(x) + cos(2x)? (The solid line is
the real part, the dashed line is the imaginary
part.)

22If this exercise is part of a computer lab, one could assign the analytical portions as a pre-lab exercise.
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(A.4) Fourier Gaussians. (Computation) ©2
In this exercise, we will use the computer to il-
lustrate features of Fourier transforms, focusing
on the particular case of Gaussian functions, but
illustrating general properties. Download the
Fourier software or the relevant hints files from
the computer exercises portion of the text web
site [129].23

The Gaussian distribution (also known as the
normal distribution) has the form

G(x) =
1√
2πσ

exp
(
−(x− x0)

2/2σ2) , (A.35)

where σ is the standard deviation and x0 is the
center. Let

G0(x) =
1√
2π

exp
(
−x2/2

)
(A.36)

be the Gaussian of mean zero and σ = 1. The
Fourier transform of G0 is another Gaussian, of
standard deviation one, but no normalization
factor:24

G̃0(k) = exp(−k2/2). (A.38)

In this exercise, we study how the Fourier trans-
form of G(x) varies as we change σ and x0.
Widths. As we make the Gaussian narrower
(smaller σ), it becomes more pointy. Shorter
lengths mean higher wavevectors, so we expect
that its Fourier transform will get wider.
(a) Starting with the Gaussian with σ = 1, nu-
merically measure the width of its Fourier trans-
form at some convenient height. (The full width
at half maximum, FWHM, is a sensible choice.)
Change σ to 2 and to 0.1, and measure the
widths, to verify that the Fourier space width
goes inversely with the real width.
(b) Analytically show that this rule is true in
general. Change variables in eqn A.6 to show
that if z(x) = y(Ax) then z̃(k) = ỹ(k/A)/A.
Using eqn A.36 and this general rule, write a
formula for the Fourier transform of a Gaussian
centered at zero with arbitrary width σ.

23If this exercise is taught as a computer lab, one could assign the analytical portions as a pre-lab exercise.
24Here is an elementary-looking derivation. We complete the square inside the exponent, and change from x to y = x + ik:

1
√

2π

∫ ∞

−∞
e−ikx exp(−x2/2) dx =

1
√

2π

∫ ∞

−∞
exp(−(x+ik)2/2) dx exp((ik)2/2) =

[∫ ∞+ik

−∞+ik

1
√

2π
exp(−y2/2) dy

]
exp(−k2/2).

(A.37)
The term in brackets is one (giving us e−k2/2) but to show it we need to shift the integration contour from Im[y] = k to
Im[y] = 0, which demands Cauchy’s theorem (Fig. 10.11).
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(c) Analytically compute the product ∆x ∆k of
the FWHM of the Gaussians in real and Fourier
space. (Your answer should be independent of
the width σ.) This is related to the Heisen-
berg uncertainty principle, ∆x∆p ∼ ", which
you learn about in quantum mechanics.
Translations. Notice that a narrow Gaussian
centered at some large distance x0 is a reason-
able approximation to a δ-function. We thus
expect that its Fourier transform will be similar
to the plane wave G̃(k) ∼ exp(−ikx0) we would
get from δ(x− x0).
(d) Numerically change the center of the Gaus-
sian. How does the Fourier transform change?
Convince yourself that it is being multiplied by
the factor exp(−ikx0). How does the power spec-
trum |G̃(ω)|2 change as we change x0?
(e) Analytically show that this rule is also true
in general. Change variables in eqn A.6 to
show that if z(x) = y(x − x0) then z̃(k) =
exp(−ikx0)ỹ(k). Using this general rule, extend
your answer from part (b) to write the formula
for the Fourier transform of a Gaussian of width
σ and center x0.

(A.5) Uncertainty. ©2
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Fig. A.3 Real-space Gaussians.

The dashed line in Fig. A.3 shows

G0(x) = 1/
√

2π exp(−x2/2). (A.39)

The dark line shows another function G(x). The
areas under the two curves G(x) and G0(x) are
the same. The dashed lines in the choices be-
low represent the Fourier transform G̃0(k) =
exp(−k2/2). Which has a solid curve that rep-
resents the Fourier transform of G?
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(A.6) Fourier relationships. ©2
In this exercise, we explore the relationships be-
tween the Fourier series and the fast Fourier
transform. The first is continuous and periodic
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in real space, and discrete and unbounded in
Fourier space; the second is discrete and peri-
odic both in real and in Fourier space. Thus,
we must again convert integrals into sums (as
in Fig. A.1).
As we take the number of points N in our
FFT to ∞ the spacing between the points gets
smaller and smaller, and the approximation of
the integral as a sum gets better and better.
Let y" = y(t") where t" = %(T/N) =
%(∆t). Approximate the Fourier series
integral A.1 above as a sum over y",
(1/T )

∑N−1
"=0 y(t") exp(−iωmt")∆t. For small

positive m, give the constant relating ỹFFT
m to

the Fourier series coefficient ỹm.

(A.7) Aliasing and windowing. (Computation) ©3

In this exercise, we will use the computer
to illustrate numerical challenges in using the
fast Fourier transform. Download the Fourier
software, or the relevant hints files, from the
computer exercises section of the book web
site [129].25

The Fourier series ỹm runs over all integers
m. The fast Fourier transform runs only over
0 ≤ m < N . There are three ways to under-
stand this difference: function-space dimension,
wavelengths, and aliasing.
Function-space dimension. The space of peri-
odic functions y(x) on 0 ≤ x < L is infinite,
but we are sampling them only at N = 32
points. The space of possible fast Fourier se-
ries must also have N dimensions. Now, each
coefficient of the FFT is complex (two dimen-
sions), but the negative frequencies are complex
conjugate to their positive partners (giving two
net dimensions for the two wavevectors km and
k−m ≡ kN−m). If you are fussy, ỹ0 has no part-
ner, but is real (only one dimension), and if N
is even ỹ−N/2 also is partnerless, but is real. So
N k-points are generated by N real points.
Wavelength. The points at which we sample the
function are spaced δx = L/N apart. It makes
sense that the fast Fourier transform would stop
when the wavelength becomes close to δx; we
cannot resolve wiggles shorter than our sample
spacing.
(a) Analytically derive the formula for y" for
a cosine wave at kN , the first wavelength not
calculated by our FFT. It should simplify to a

constant. Give the simplified formula for y" at
kN/2 (the first missing wavevector after we have
shifted the large ms to N −m to get the nega-
tive frequencies). Numerically check your pre-
diction for what y" looks like for cos(kNx) and
cos(kN/2x).
So, the FFT returns Fourier components only
until kN/2 when there is one point per bump
(half-period) in the cosine wave.
Aliasing. Suppose our function really does
have wiggles with shorter distances than our
sampling distance δx. Then its fast Fourier
transform will have contributions to the long-
wavelength coefficients ỹFFT

m from these shorter
wavelength wiggles; specifically ỹm±N , ỹm±2N ,
etc. Let us work out a particular case of this: a
short-wavelength cosine wave.
(b) On our sampled points x", analytically
show that exp(ikm±N x") = exp(ikmx"). Show
that the short-wavelength wave cos(km+Nx") =
cos(kmx"), and hence that its fast Fourier trans-
form for small m will be a bogus peak at the long
wavelength km. Numerically check your predic-
tion for the transforms of cos(kx) for k > kN/2.
If you sample a function at N points with
Fourier components beyond kN/2, their contri-
butions get added to Fourier components at
smaller wavevectors. This is called aliasing, and
is an important source of error in Fourier meth-
ods. We always strive to sample enough points
to avoid it.
You should see at least once how aliasing af-
fects the FFT of functions that are not sines and
cosines. Form a 32-point wave packet y(x) =
1/(
√

2πσ) exp(−x2/2σ2). Change the width σ
of the packet to make it thinner. Notice that
when the packet begins to look ratty (roughly
as thin as the spacing between the sampled
points x") the Fourier series hits the edges and
overlaps; high-frequency components are ‘folded
over’ or aliased into the lower frequencies.
Windowing. One often needs to take Fourier
series of functions which are not periodic in
the interval. Set the number of data points N
to 256 (powers of two are faster) and compare
y(x) = cos kmx for m = 20 with an ‘illegal’ non-
integer value m = 20.5. Notice that the plot of
the real-space function y(x) is not periodic in
the interval [0, L) for m = 20.5. Notice that its
Fourier series looks pretty complicated. Each

25If this exercise is taught as a computer lab, one could assign the analytical portions as a pre-lab exercise.
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of the two peaks has broadened into a whole
staircase. Try looking at the power spectrum
(which is proportional to |ỹ|2), and again com-
pare m = 20 with m = 20.5. This is a numerical
problem known as windowing, and there are var-
ious schemes to minimize its effects as well.

(A.8) White noise. (Computation) ©2
White light is a mixture of light of all frequen-
cies. White noise is a mixture of all sound fre-
quencies, with constant average power per unit
frequency. The hissing noise you hear on radio
and TV between stations is approximately white
noise; there are a lot more high frequencies than
low ones, so it sounds high-pitched.
Download the Fourier software or the relevant
hints files from the computer exercises portion
of the text web site [129].
What kind of time signal would generate white
noise? Select White Noise, or generate inde-
pendent random numbers y" = y(%L/N) cho-
sen from a Gaussian26 distribution ρ(y) =
(1/
√

2π) exp(−y2/2σ). You should see a
jagged, random function. Set the number of
data points to, say, 1024.
Examine the Fourier transform of the noise sig-
nal. The Fourier transform of the white noise
looks amazingly similar to the original signal.
It is different, however, in two important ways.
First, it is complex: there is a real part and an
imaginary part. The second is for you to dis-
cover.
Examine the region near k = 0 on the Fourier
plot, and describe how the Fourier transform of
the noisy signal is different from a random func-
tion. In particular, what symmetry do the real
and imaginary parts have? Can you show that
this is true for any real function y(x)?
Now examine the power spectrum |ỹ|2.27 Check
that the power is noisy, but on average is
crudely independent of frequency. (You can
check this best by varying the random number
seed.) White noise is usually due to random,
uncorrelated fluctuations in time.

(A.9) Fourier matching. ©2
The top three plots (a)–(c) in Fig. A.4 are func-
tions y(x) of position. For each, pick out which
of the six plots (1)–(6) are the corresponding
function ỹ) in Fourier space? (Dark line is
real part, lighter dotted line is imaginary part.)
(This exercise should be fairly straightforward
after doing Exercises A.2, A.4, and A.8.)

(A.10) Gibbs phenomenon. (Mathematics) ©3
In this exercise, we will look at the Fourier series
for the step function and the triangle function.
They are challenging because of the sharp cor-
ners, which are hard for sine waves to mimic.
Consider a function y(x) which is A in the
range 0 < x < L/2 and −A in the range
L/2 < x < L (shown above). It is a kind of
step function, since it takes a step downward at
L/2 (Fig. A.5).28

(a) As a crude approximation, the step func-
tion looks a bit like a chunky version of a sine
wave, A sin(2πx/L). In this crude approxima-
tion, what would the complex Fourier series be
(eqn A.4)?
(b) Show that the odd coefficients for the com-
plex Fourier series of the step function are ỹm =
−2Ai/(mπ) (m odd). What are the even ones?
Check that the coefficients ỹm with m = ±1 are
close to those you guessed in part (a).
(c) Setting A = 2 and L = 10, plot the par-
tial sum of the Fourier series (eqn A.1) for
m = −n,−n + 1, . . . , n with n = 1, 3, and 5.
(You are likely to need to combine the coeffi-
cients ỹm and ỹ−m into sines or cosines, unless
your plotting package knows about complex expo-
nentials.) Does it converge to the step function?
If it is not too inconvenient, plot the partial sum
up to n = 100, and concentrate especially on the
overshoot near the jumps in the function at 0,
L/2, and L. This overshoot is called the Gibbs
phenomenon, and occurs when you try to ap-
proximate functions y(x) which have disconti-
nuities.
One of the great features of Fourier series is that
it makes taking derivatives and integrals easier.
What does the integral of our step function look

26We choose the numbers with probability given by the Gaussian distribution, but it would look about the same if we took
numbers with a uniform probability in, say, the range (−1, 1).
27For a time signal f(t), the average power at a certain frequency is proportional to |f̃(ω)|2; ignoring the proportionality
constant, the latter is often termed the power spectrum. This name is sometimes also used for the square of the amplitude of
spatial Fourier transforms as well.
28It can be written in terms of the standard Heaviside step function Θ(x) = 0 for x < 0 and Θ(x) = 1 for x > 0, as
y(x) = A (1 − 2Θ(x − L/2)).
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Fig. A.4 Fourier matching.

like? Let us sum the Fourier series for it!
(d) Calculate the Fourier series of the integral
of the step function, using your complex Fourier
series from part (b) and the formula A.17 for the
Fourier series of the integral. Plot your results,
doing partial sums up to ±m = n, with n = 1,
3, and 5, again with A = 2 and L = 10. Would
the derivative of this function look like the step
function? If it is convenient, do n = 100, and
notice there are no overshoots.
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Fig. A.5 Step function.
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