
Solving Schrodinger's equation: Free particles and
uncertainty

We'll be exploring the evolution of a Gaussian packet, corresponding to the ground state of Hydrogen atom in
a harmonic oscillator with frequency one Terahertz. We start by defining some constants.

In [ ]:

We define  on a lattice of Np points x, from -L/2 to L/2.

In [ ]:

Now we define the initial wavefunction  on our grid.

In [ ]:

In [ ]:

If  is expressed in Fourier space, applying the kinetic energy is pointwise multiplication. , so 
. We convert from real space into Fourier space using a FFT (Fast Fourier Transform),

which returns  at Np points separated by :

Notice that  grows until halfway down the list, and then jumps to negative values and shrinks. We define 
and  as arrays

In [ ]:

In [ ]:

hbar = 1.054571628251774e-27;
omega = 1.e12;
protonMass = 1.672621637e-24;
m = protonMass;
a0 = sqrt(...); # RMS width of Gaussian

ψ

L = ...;
Np = ...;
dx = ...;
x = linspace(-L/2,L/2-dx,Np)

ψ(0)

psi0 = (...)**(1./4.) * exp(-...)

plot(x,abs(psi0)**2)
xlim(-2*a0,2*a0);

ψ(k) p = −iℏk
/2m = − /2mp2 ℏ2k2

(k)ψ~ dk = 2π/L
k = [0, dk, 2dk, … , (Np/2)dk, −(Np/2 − 1)dk, … , −2dk, −dk]

k k
k2 = k2

dk = ...;
k = zeros(Np);
for j in range(0,...):
    k[j] = ...*dk 
for j in range(...,Np):
    k[j] = (j-Np) * dk 
k2 = k**2

plot(k2)



We now define the time evolution operator  in Fourier space. Note that the square root of minus one is
1j in Python.

In [ ]:

and we define  using Fourier transforms.

In [ ]:

In [ ]:

We can understand this spread as a consequence of the uncertainty principle. We can calculate the
wavepacket width  by the discrete approximation to the integral 

In [ ]:

Our initial wavepacket has a RMS width 

In [ ]:

We know that a minimum uncertainty wavepacket like ours has , so we expect the packet width
to grow like  with  given by the momentum uncertainty. We plot the comparison...

In [ ]:

(t)U~kin

def UkinTilde(t):
    return exp(-1j * ...)

ψ(t)

from scipy import fft, ifft
def psi(t):
    return ifft(...*fft(psi0))

P = ...
plot(x, psi(P/4).real, x, psi(P/4).imag)
figure()
plot(x, ..., x, ...)
figure()
plot(x, ..., x, ...)

⟨ (t)⟩x2‾ ‾‾‾‾‾‾√ ⟨ (t)⟩ ∼ ∑ |ψ(x) dxx2 x2 |2

def width(t):
    return sqrt(sum(... * abs(...)**2 * ...))

Δx = a0

width(0), a0

ΔxΔp = ℏ/2
vt v

deltaP = ...;
v = ...;
times = linspace(0,2*P,100);
widths = [width(t) for t in times];
plot(times, widths, times, ...)


