
Harmonic Oscillators: Raising and lowering
operators

This exercise introduces symbolic manipulation -- the historical Mathematical stronghold, but here
we use the sympy extensions to Python.
Harmonic oscillator Hamiltonian in one dimension. Ground state . Check normalization. Plot
ground state, evaluated at ...

In [ ]:

Fancy printing of Greek characters and symbols

In [ ]:

Tell Python which variables are treated as sympy symbols, which are real and which positive, and how to
draw them.

In [ ]:

Define  symbolically. Note: we write 1/4 as Rational(1,4) to avoid Python turning it into 0.25 (or worse, 0 as
a ratio of integers).

In [ ]:

Is  normalized?

In [ ]:

To plot sympy expressions, we need to give values for all symbolic variables (except x, which it varies in the
plot). We take our constant's from McEuen's bouncing buckyballs (Park et al. "Nanomechanical oscillations in
a single-C  transistor", Nature 407, 57 (2000)).

We do so by defining a dictionary 'value', where value[hbar] gives the numerical evaluation. Dictionaries in
Python are stored as key:value pairs in {}:

In [ ]:

ψ0

from sympy import *

# init_printing(use_unicode=True) for Anaconda
init_printing(use_latex=True) # for Wakari

x = Symbol('x', real=True)
m, hbar, omega = symbols('m hbar omega', real=True, positive=True)

ψ0

psi0 = (m*omega/(pi*hbar))...
psi0

ψ0

integrate(..., (x,-oo,oo))

06

amu = 1.660538782e-24;
value = {m:..., hbar:1.054571628251774e-27, omega:..., pi:float(pi)}



To substitute values into a sympy expression using our dictionary 'value', we use expr.subs(value)

In [ ]:

Now we plot psi0. How do the zero-point fluctuations compare to the size of an atom?

In [ ]:

How do the zero-point fluctuations for McEuen's bouncing buckyball compare to the size of an atom?

Define the Hamiltonian: an operator that returns a symbolic function given a symbolic function.
sympy.diff(psi,x,2) differentiates psi twice with respect to x.

In [ ]:

Is  the ground state? To simplify a sympy expression, we can use sympy.simplify(expr) or expr.simplify()

In [ ]:

Momentum operator p. Creation operator , Exciting the ground state using creation operators.

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

value[pi]

a0 = sqrt(...).subs(value)
a0, psi0.subs(value)

plotting.plot(psi0.subs(value),(x,-4*a0,...));

def H(psi):
    return ...*diff(psi,x,2) + ... * psi

ψ0

simplify(H(psi0)/psi0)

a†

def p(psi):
    return ...
p(psi0)

def adag(psi):
    return ...

adag(psi0)

(H(adag(psi0))/...).simplify()

adag(adag(psi0))

integrate(...,(x,-oo,oo))

integrate(...)



This isn't the eigenstate , since it has the wrong norm. Try taking the norm of higher powers of 
until you figure out what to divide by to normalize it.

In [ ]:

Defining normalized eigenstates. Use recursion, defining  in terms of , unless . It should be 
 times the constant you figured out that depends on .

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

ψ2 (a†)nψ0

integrate(...)

ψn ψn−1 n = 1
a†ψn−1 n

def psi(n):
    if n==0:
        return ...
    return (adag(...)/...).simplify()

psi(0)

psi(1)

psi(2)

psi(3)

psi(4)

integrate(psi(4)**2, (x, -oo, oo))

plotting.plot(psi(0).subs(value), psi(1).subs(value), ...,(x,-5*a0,5*a0));


