
Square
 Well
 Ground
 State
 (Weinberg
 problem
 1.1)

This is an ipython notebook. Lectures about Python, useful both for beginners and experts, can be found

at http://scipy-lectures.github.io.

I recommend installing the Anaconda distribution. Make sure not to pay for it! Click Anaconda Academic

License; it should be free for those with edu e-mail addresses.

Open the notebook by (1) copying this file into a directory, (2) in that directory typing

ipython notebook --pylab inline

and (3) selecting the notebook.

Like Mathematica, you type in commands and then hit 'Shift Return' to execute them.

In [ ]:

Functions like Psi0 are created using 'def'. Note that indents are important in Python, but ipython does

them for you properly in many cases. Note that 'a' in the function doesn't have to be passed separately:

Python will use the outer 'namespace' if it's not defined in the function.

In [ ]:

We import 'scipy.integrate.quad' to do numerical integrals. Typing ?quad gives a documentation window

at the bottom of the browser.

In [ ]:

The integration package quad(func,a,b) demands that we define the integrand as a separate function.

In [ ]:

It returns two numbers: the integral, and an error estimate.

In [ ]:

a = 3.

def Psi0(x):
    return (1/sqrt(...)) * cos(... / (...))
Psi0(0.)

from scipy.integrate import quad
?quad

def Psi0Sq(x):
    return ...**2
Psi0Sq(0.)

quad(Psi0Sq,-3.,3.)



To get the integral, we select the first entry of the answer, which in Python has index zero.

In [ ]:

We now define the trial wavefunction, without the right normalization:

In [ ]:

We can find the normalization by integrating PsiUnnormalized:

In [ ]:

In [ ]:

Testing that the normalization is right...

In [ ]:

To plot, define a range of x's using 'linspace'. Python automatically will evaluate functions like Psi and
Psi0 on all the x's at once (much more efficiently than it does loops).

In [ ]:

In [ ]:

Plot takes the x values followed by the y values. Psi0 and Psi should look rather similar.

In [ ]:

Define the integrand for the overlap of Psi0 and Psi:

quad(Psi0Sq,-3.,3.)[0]

def PsiUnnormalized(x):
    return (a**2-...)

def PsiUnnormalizedSq(x):
    return ...
InverseNormSq = quad(..., ..., ...)[0]
norm = ...
norm

def Psi(x):
    """Trial wavefunction"""
    return (norm * ... * PsiUnnormalized(x))

def PsiSq(x):
   ...
quad(PsiSq,...)

?linspace

xCoarse = linspace(-a,a,7)
print xCoarse
print Psi0(xCoarse)
x = linspace(-a,a,100)

plot(x, Psi0(x))
plot(x, Psi(x))



In [ ]:

In [ ]:

Finally, find the probability of Psi being in the ground state

In [ ]:

def OverlapIntegrand(x):
    return ...

overlap = quad(OverlapIntegrand,-3,3)[0]

ProbGroundState = ...

ProbGroundState


