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Potentially useful reading
Sakurai and Napolitano, sections 1.5 (Rotation),

Schumacher & Westmoreland chapter 2

2.1 Commutation of functions of x and p (Sakurai and Napolitano, exercise 1.29).

(a) On page 247, Gottfried (1966) states that

[xi, G(p)] = i~
∂G

∂pi
, [pi, F (x)] = −i~

∂F

∂xi
(1)

can be “easily derived” from the fundamental commutation relations for all functions
of F and G that can be expressed as a power series in their arguments. Verify this
statement.

(b) Evaluate [x2, p2] in the case of one dimension. Compare your result with the classical
Poisson bracket {x2, p2}classical.

2.2 Buckyball wavelengths (Schumacher & Westmoreland problem 1.4).

In 1999, a research group at the University of Vienna was able to observe quantum
interference in a beam of C60 molecules. C60 is called buckminsterfullerene, and the
soccerbal-shaped C60 molecules are sometimes called buckyballs. A buckyball molecule
has a mass of about 1.2× 10−24 kg.

(a) The buckyball wavelength in the experiment was about 3pm. How fast were the
molecules moving?

(b) What would be the wavelength of an electron moving at the same speed?

2.3 Adiabatic theorem (Schumacher & Westmoreland problem 2.5).

Consider a spin-1/2 particle passing through a series of spin filters (See Figure 2.13 on
p.35 of Schumacher & Westmoreland). Now, however, there are 13 filters (numbered
0 through 12). The n-th filter selects for the state |n+〉, the +~/2 basis state for a
measurement of spin along an axis in the xz-plane an angle nπ/12 from z. From Eq.
2.35, we can write

|n+〉 = cos
nπ

24
|z+〉+ sin

nπ

24
|z−〉. (2)

What is the probability that a spin-1/2 particle, initially in the state |z+〉, will pass all
13 filters?



2.4 Rotation Matrices. (Math,×1) ©2
A rotation matrix R takes an orthonormal basis x̂, ŷ, ẑ into another orthonormal triad
û, v̂, ŵ, with û = Rx̂, v̂ = Rŷ, and ŵ = Rẑ.

(a) Which is another way to write the matrix R?

I. R =

(
u1v1 + v1w1 + w1u1 · · ·

· · ·

)
II. R =

( û )
( v̂ )
( ŵ )

;

III. R =
((

û
) (

v̂
) (

ŵ
))

;

IV. R = û⊗ v̂ + v̂ ⊗ ŵ + ŵ ⊗ û

Rotation matrices are to real vectors what unitary transformations (common in quan-
tum mechanics) are to complex vectors. A unitary transformation satisfies U †U = 1,
where the ‘dagger’ gives the complex conjugate of the transpose, U † = (UT )∗. Since R
is real, R† = RT .

(b) Argue that RTR = 1.

Thus R is an orthogonal matrix, with transpose equal to its inverse.

(c) In addition to (b), what other condition do we need to know that R is a proper
rotation (i.e., in SO(3)), and not a rotation-and-reflection with determinant -1?

(I) û, v̂, and ŵ must form a right-handed triad (presuming as usual that x̂, ŷ, and
ẑ are right-handed),

(II) û · v̂ × ŵ = 1
(III) ŵ · û× v̂ = 1
(IV) All of the above

One of the most useful tricks in quantum mechanics is multiplying by one. The operator
|k〉〈k| can be viewed as a projection operator: |k〉〈k|ψ〉 is the part of |ψ〉 that lies along
direction |k〉. If k labels a complete set of orthogonal states (say, the eigenstates
of the Hamiltonian), then the original state can be reconstructed by adding up the
components along the different directions: |ψ〉 =

∑
k |k〉〈k|ψ〉. Hence the identity

operator 1 =
∑

k |k〉〈k|. We’ll use this to derive the path-integral formulation of
quantum mechanics, for example. Let’s use it here to derive the standard formula for
rotating matrices.

Under a change of basis R, a matrix A transforms to RTAR. We are changing from the
basis x̂1, x̂2, x̂3 = |xi〉 to the basis |uj〉, with |un〉 = R|xn〉. Since |uj〉 = R|xj〉, we know
〈xi|uj〉 = 〈xi|R|xj〉 = Rij, and similarly 〈ui|xj〉 = RT

ij. Let the original components of
the operator A be Ak` = 〈xk|A|x`〉 and the new coordinates be A′ij = 〈ui|A|uj〉.
(d) Multipling by one twice into the formula for A′: A′ij = 〈ui|1A1|uj〉 and expanding
the first and second identities in terms of xk and x`, derive the matrix transformation
formula A′ij = RT

ikAk`R`j = RTAR, where we use the Einstein summation convention
over repeated indices..



2.5 Random matrix theory.1 (Mathematics, Quantum) ©3
One of the most active and unusual applications of ensembles is random matrix theory,
used to describe phenomena in nuclear physics, mesoscopic quantum mechanics, and
wave phenomena. Random matrix theory was invented in a bold attempt to describe
the statistics of energy level spectra in nuclei. In many cases, the statistical behavior of
systems exhibiting complex wave phenomena—almost any correlations involving eigen-
values and eigenstates—can be quantitatively modeled using ensembles of matrices with
completely random, uncorrelated entries!

To do this exercise, you will need to find a software environment in which it is easy to
(i) make histograms and plot functions on the same graph, (ii) find eigenvalues of matri-
ces, sort them, and collect the differences between neighboring ones, and (iii) generate
symmetric random matrices with Gaussian and integer entries. Mathematica, Matlab,
Octave, and Python are all good choices. For those who are not familiar with one of
these packages, I will post hints on how to do these three things under ‘Random ma-
trix theory’ in the computer exercises section of the book web site (http://pages.physics.
cornell.edu/∼myers/teaching/ComputationalMethods/ComputerExercises/RandomMat
rixTheory/RandomMatrixTheory.html).

The most commonly explored ensemble of matrices is the Gaussian orthogonal ensem-
ble (GOE). Generating a member H of this ensemble of size N ×N takes two steps.

• Generate an N×N matrix whose elements are independent random numbers with
Gaussian distributions of mean zero and standard deviation σ = 1.

• Add each matrix to its transpose to symmetrize it.

As a reminder, the Gaussian or normal probability distribution of mean zero gives a
random number x with probability

ρ(x) =
1√
2πσ

e−x
2/2σ2

. (3)

One of the most striking properties that large random matrices share is the distribution
of level splittings.

(a) Generate an ensemble with M = 10000 or more GOE matrices of size N = 2, 4,
and 10. Find the eigenvalues λn of each matrix, sorted in increasing order. Find the
difference between neighboring eigenvalues λn+1 − λn, for n, say, equal to2 N/2. Plot
a histogram of these eigenvalue splittings divided by the mean splitting, with bin size
small enough to see some of the fluctuations. (Hint: Debug your work with M = 10,
and then change to M = 10000.)

What is this dip in the eigenvalue probability near zero? It is called level repulsion.

1This exercise was developed with the help of Piet Brouwer.
2Why not use all the eigenvalue splittings? The mean splitting can change slowly through the spectrum,

smearing the distribution a bit.



For N = 2 the probability distribution for the eigenvalue splitting can be calculated
pretty simply. Let our matrix be M =

(
a b
b c

)
.

(b) Show that the eigenvalue difference for M is λ =
√

(c− a)2 + 4b2 = 2
√
d2 + b2

where d = (c−a)/2, and the trace c+a is irrelevant. Ignoring the trace, the probability
distribution of matrices can be written ρM(d, b). What is the region in the (b, d) plane
corresponding to the range of eigenvalue splittings (λ, λ+ ∆)? If ρM is continuous and
finite at d = b = 0, argue that the probability density ρ(λ) of finding an eigenvalue
splitting near λ = 0 vanishes (level repulsion). (Hint: Both d and b must vanish to
make λ = 0. Go to polar coordinates, with λ the radius.)

(c) Calculate analytically the standard deviation of a diagonal and an off-diagonal el-
ement of the GOE ensemble (made by symmetrizing Gaussian random matrices with
σ = 1). You may want to check your answer by plotting your predicted Gaussians over
the histogram of H11 and H12 from your ensemble in part (a). Calculate analytically
the standard deviation of d = (c − a)/2 of the N = 2 GOE ensemble of part (b), and
show that it equals the standard deviation of b.

(d) Calculate a formula for the probability distribution of eigenvalue spacings for the
N = 2 GOE, by integrating over the probability density ρM(d, b). (Hint: Polar coordi-
nates again.)

If you rescale the eigenvalue splitting distribution you found in part (d) to make the
mean splitting equal to one, you should find the distribution

ρWigner(s) =
πs

2
e−πs

2/4. (4)

This is called the Wigner surmise; it is within 2% of the correct answer for larger
matrices as well.3

(e) Plot eqn 4 along with your N = 2 results from part (a). Plot the Wigner surmise
formula against the plots for N = 4 and N = 10 as well.

Does the distribution of eigenvalues depend in detail on our GOE ensemble? Or could
it be universal, describing other ensembles of real symmetric matrices as well? Let us
define a ±1 ensemble of real symmetric matrices, by generating an N×N matrix whose
elements are independent random variables, each ±1 with equal probability.

(f) Generate an ensemble of M = 1000 symmetric matrices filled with ±1 with size
N = 2, 4, and 10. Plot the eigenvalue distributions as in part (a). Are they universal
(independent of the ensemble up to the mean spacing) for N = 2 and 4? Do they appear
to be nearly universal 4 (the same as for the GOE in part (a)) for N = 10? Plot the
Wigner surmise along with your histogram for N = 10.

3The distribution for large matrices is known and universal, but is much more complicated to calculate.
4Note the spike at zero. There is a small probability that two rows or columns of our matrix of ±1 will

be the same, but this probability vanishes rapidly for large N .



The GOE ensemble has some nice statistical properties. The ensemble is invariant
under orthogonal transformations:

H → R>HR with R> = R−1. (5)

(g) Show that Tr[H>H] is the sum of the squares of all elements of H. Show that this
trace is invariant under orthogonal coordinate transformations (that is, H → R>HR
with R> = R−1). (Hint: Remember, or derive, the cyclic invariance of the trace:
Tr[ABC] = Tr[CAB].)

Note that this trace, for a symmetric matrix, is the sum of the squares of the diagonal
elements plus twice the squares of the upper triangle of off-diagonal elements. That is
convenient, because in our GOE ensemble the variance (squared standard deviation) of
the off-diagonal elements is half that of the diagonal elements (part (c)).

(h) Write the probability density ρ(H) for finding GOE ensemble member H in terms
of the trace formula in part (g). Argue, using your formula and the invariance from
part (g), that the GOE ensemble is invariant under orthogonal transformations: ρ(R>HR) =
ρ(H).

This is our first example of an emergent symmetry. Many different ensembles of sym-
metric matrices, as the size N goes to infinity, have eigenvalue and eigenvector distri-
butions that are invariant under orthogonal transformations even though the original
matrix ensemble did not have this symmetry. Similarly, rotational symmetry emerges
in random walks on the square lattice as the number of steps N goes to infinity, and
also emerges on long length scales for Ising models at their critical temperatures.


