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Due Fri Sept. 12 (turn in Wednesday or in class homework box)
Last correction at August 27, 2014, 9:30 am

NOTE: No class Friday September 12. Attend the Henley symposium!

Potentially useful reading
Sakurai and Napolitano, section 1.4 (Uncertainty)

Weinberg sections 3.3 (Uncertainty), 12.1 (Entanglement)
Sethna, “Entropy, Order Parameters, and Complexity” appendix A (Evolving Schrödinger)

Schumacher & Westmoreland sections 6.1, 6.2, 6.4 (Entanglement), 6.5, 6.6, 6.7 (GHZ),
Appendix B (Evolving Schrödinger)

3.1 Eigen Stuff. (Math,×1) ©2
Consider an operator for a two-state system O =

(
0 −4
−4 6

)
Its eigenvectors are |e1〉 =

1√
5

( 2
1 ) and |e2〉 = 1√

5
( −12 )

(a) What are the associated eigenvalues o1 and o2?

(b) Use |e1〉 and |e2〉 to construct a rotation matrix R that diagonalizes O, so RTOR =(
o1 0
0 o2

)
. (Hint: See problem 2.4(a). We want R to rotate the axes into û = |e1〉 and

v̂ = |e2〉.) What angle does R rotate by?

(c) Assume that the system is in a state |L〉 = ( 1
0 ) Decompose |L〉 into the eigenvectors

of O. (Hint: As in exercise 2.4(d), multiplying |L〉 by one is useful.) If the observable
corresponding to the operator O is measured for state |L〉, what is the probability of
finding the value o1? Does the probability of finding either o1 or o2 sum to one?

3.2 Coherent And Incoherent Bits. (Schumacher and Westmoreland Problem 2.8) ©2
Two boxes each produce a stream of qubits. Box A produces the qubits all in the state
|+〉 = 1√

2
(|0〉 + |1〉). Box B randomly produces qubits in states |0〉 and |1〉, each with

probability 1/2. We have one of the boxes, but it is unmarked and so we do not know
which kind it is. Describe an experiment on the qubits that can tell the difference between
box A and box B. Can you reliably tell the difference between the boxes by examining
only one of the qubits?



3.3 GHZ States. (Schumacher and Westmoreland Problem 6.6) ©3
Consider the GHZ state |ψ〉 = 1√

2
(|0, 0, 0〉 − |1, 1, 1〉), where Alice, Bob and Charles

possess the first, second and third bits respectively.

(a) Suppose that Alice makes a Z measurement on her qubit. Show that the qubits of
Bob and Charlie are in a product state, regardless of the measurement result.

(b) Suppose Alice makes an X measurement on her qubit. Show that Bob and Charlie’s
qubits end up in an entangled state, regardless of the measurement result.

3.4 Anti-Singlets. (Schumacher and Westmoreland Problem 6.8) ©3
Section 6.6 of Schumacher and Westmoreland showed that if two qubits are in the singlet
state 〈S| = 1√

2
(〈↑|l〈↓|r − 〈↓|l〈↑|r), then measurements of parallel spin components (in

the XZ plane) always yield opposite results.

(a) Show that this is also true for Y measurements on |S〉 .

(b) Does there exist an “anti-singlet” state of two qubits, for which measurements of
parallel spin components always yield identical results? If so, write down the state
vector. If not, give a proof that no state, product or entangled, can do this.

3.5 Momentum commutators, magnetism, and Landau levels. (Sakurai Problem
2.37) ©3
An electron moves in the presence of a uniform magnetic field in the z-direction (B =
Bẑ)

(a) Evaluate [Πx,Πy], where Πx = px − eAx

c
and Πy = py − eAy

c

(b) By comparing the Hamiltonian and the commutation relation obtained in (a) with
those of the one-dimensional oscillator problem, show how we can immediately write
the energy eigenvalues as

Ek,n =
~2k2

2m
+

(
|eB|~
mc

)(
n+

1

2

)
,

where ~k is the the continuous eigenvalues of the pz operator and n is a non-negative
integer including zero.

3.6 Evolving Schrödinger: Free particles and uncertainty. (Computation) ©3
Several of our computational exercises will involve solving the time-dependent Schrödinger
equation for one-dimensional quantum systems. In this first of these exercises, we shall
evolve the free particle Hamiltonian

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
ψ = Hkinψ

ψ(x, t) = U(t)ψ(0) = e−iHkint/~ψ(x, 0) (1)



In a later exercise, we shall solve for the behavior of a hydrogenic harmonic oscilla-
tor with angular frequency ω = 1012 radians/sec. We’ll use the ground state of this
harmonic oscillator as our initial condition for the free-particle evolution:

ψ0(x) =
(mω
π~

)1/4
e−mωx2/2~ =

(
1

2πa20

)1/4

e−x
2/4a20 . (2)

Here a0 =
√

~/2mω is the root-mean-square width of the Gaussian probability distri-
bution |ψ(x)|2.
With no potential energy, we can solve for the motion of a free particle, ψ̃(k, t) =
Ukin(t)ψ(k, t = 0) using Fourier transforms.

ψ̃(k, t) = e−i(~k
2/2m)tψ̃(k, t = 0) (3)

ψ̃(x, t) = IFFT [e−i(~k
2/2m)tFFT [ψ̃(x, t = 0)]] (4)

where FFT takes a Fourier transform of the wavepacket, and IFFT takes an inverse
Fourier transform. (FFT stands for Fast Fourier Transform.)

Let’s numerically solve for the evolution of ψ0(x) from eqn 2. We’ll evaluate it at a
discrete set of Np = 200 points spanning a distance L = 80a0. With dx = L/Np, the
points will be at −L/2, L/2 + dx, . . . , L/2 − dx. In CGS units, the hydrogen mass
is about the proton mass 1.672610−24 gm, ~ = 1.0545710−27 erg sec, and we decided
ω = 1012 radians/sec.

(a) Define ψ0 on this grid. Plot your |ψ0|2, and check that it roughly has width a0.

The Fast Fourier Transform of ψ returns ψ̃(k) evaluated at points

k = (0, dk, 2dk, . . . ,−2dk,−dk), (5)

with dk = 2π/L. (These correspond to the plane waves with period L; FFTs assume
periodic boundary conditions.) The maximum value kmax = π/dx happens in the center
of the FFT. To do our time evolution, we need to define an array k2 evaluated at these
points, which should rise quadratically, come to a cusp, and then fall back to zero.

(b) Define k2 on this grid. Plot it.

Now we can evolve ψ(x, t) = Ukin(t)ψ0(x).

(c) Create a routine that calculates ψ(x, t) using eqn 4. Plot the real and imaginary
parts of ψ(x, t) at t = P/4, P , and 2P on separate plots, where P = 2π/ω is the period
of the harmonic oscillator in the later exercise. What happens to the width of the wave
packet?

The Heisenberg uncertainty principle tells us that ∆x∆p ≥ ~/2. The Gaussian wavepacket
we use is the form that minimizes this inequality, so we expect the packet width to grow
like vt with v given by the momentum uncertainty v ∼ ∆p/m

(d) Give the formula for v for our packet. Calculate ∆x =
√
〈x2〉 as a function of time,

for points 0 ≤ t ≤ 2P . Plot ∆x versus time and vt versus time on the same plot. Why
do they not agree at short times?



3.7 Entangled Spins. (Spins) ©3
In class, we studied the entanglement of the singlet spin state |S〉 = (1/

√
2)(|↑ 〉`|↓ 〉r−

|↓ 〉`|↑ 〉r) of electrons of a diatomic molecule as the atoms L and R are separated;1 the
spins on the two atoms are in opposite directions, but the system is in a superposition
of the two choices. Here we discuss another such superposition, but with a different
relative phase for the two choices:

|χ〉 = (1/
√

2)(|↑ 〉`|↓ 〉r + |↓ 〉`|↑ 〉r) (6)

You should know from angular momentum addition rules that the space of product
wavefunctions of two spin 1/2 states can be decomposed into a spin 1 and a spin 0 piece:
1/2⊗ 1/2 = 1⊕ 0. So there are two orthogonal eigenstates of Sz with eigenvalue zero: one
of total spin zero and one of total spin one.

(a) Total spin. Which state is which? (If you don’t know from previous work, calcu-
late!) Why do we call |S〉 a singlet?

Now, is the spin wavefunction compatible with what we know about electron wavefunc-
tions?

(b) Symmetry. When the two spins are exchanged, how does |χ〉 change? If the
total wavefunction Ψ(xL, sL, xR, sL) is a product of this spin wavefunction χ(sL, sR)
and and a two-particle spatial wavefunction ψ(xL, xR), what symmetry must ψ have
under interchange of electrons?

We noted in class that two other spin-1 product states, | ↑ 〉`| ↑ 〉r and | ↓ 〉`| ↓ 〉r do not
form entangled states when L and R separate. Is |χ〉 like these spin-1 states, or is it
entangled like |S〉 is?

(c) Entanglement. Give the Schmidt decomposition of |χ〉. What are the singular
values? What is the entanglement entropy? (Hint: The steps should be very familiar
from class.)

(d) Singular Value Decomposition (SVD). Let M be the matrix which gives |χ〉
as a product of left and right spin states:

|χ〉 = ( |↑ 〉` |↓ 〉` )M
(
|↑ 〉r
|↓ 〉r

)
. (7)

What is M? Give an explicit singular value decomposition2 M = UΣV T of the matrix
M . Explain how the SVD gives us the Schmidt decomposition of part (c).

1We assumed that, when separated, one electron is localized basically on each of the two atoms, and the
spin kets are labeled based on the primary locale of the corresponding spatial wavefunction for that electron.

2Remember that the SVD guarantees that U and V have orthonormal columns, and Σ is a diagonal matrix
whose diagonal elements σi are all positive and decreasing (so σi ≥ σi+1 ≥ 0). There is some flexibility in the
singular vectors (i.e., matched pairs can both have their signs changed), but the singular values are unique
and hence a property of the matrix.


