
Problem Set 4: Bell & Harmonic Oscillators
Graduate Quantum I

Physics 6572
James Sethna

Due Friday Sept. 19
Last correction at September 16, 2014, 5:28 pm

Potentially useful reading
Weinberg sections 2.5 (Harmonic oscillator), 12.2 (Bell)

Sakurai and Napolitano sections 2.3, 2.5 (Harmonic oscillator), 2.7 (Aharonov-Bohm,
Schumacher & Westmoreland sections 5.4 (Exponentials of matrices), 6.5, 6.6 (Bell), 13.1,

13.2 (Harmonic oscillator),

4.1 Exponentials of matrices. (Math) ©3
In quantum mechanics, one often takes exponentials of operators. The exponential of
a matrix exp(M) can be computed using several different equivalent relations.

First, one can compute it as a power series:

exp(M) =
∞∑
n=0

Mn/n! (1)

Let’s take the exponential exp(−iφσ2/2), where σ2 = ( 0 −i
i 0 ) is the second Pauli matrix

(also known as σy). This is the definition of how spin 1/2 particles transform under
rotations.

(a) Note that σ2
2 = 1. Separate the infinite series into even and odd terms, and express

exp(−iφσ2/2) as a linear combination of the identity matrix 1 and the matrix σ2. In
your answer, note that a 360◦ rotation is not equal to the identity, but to minus the
identity!

Secondly, one can compute it as an infinite product of infinitesimal transformations:

exp(M) = lim
n→∞

exp(M/n)n = lim
n→∞

(1 +M/n)n. (2)

This will be the basic trick we use to generate the path-integral formulation of quantum
mechanics. It is also the way we generate symmetry operations (like rotations) from
infinitesimal generators (like angular momentum).1 For example, in two dimensions
the angular momentum operator is J = i~ ( 0 1

−1 0 ).

(b) Show that a 2 × 2 rotation matrix by an angle θ/n, in the limit n → ∞, can be
written as 1+ (Cθ/n)J . What is the constant C? Argue, without calculation, that the
product in eqn 2 must generate the finite-angle rotations.

1Continuous groups like the rotations are called Lie groups. The corresponding infinitesimal generators,
and their commutation relations, are called the Lie algebra for the group.



Finally, many matrices which arise in quantum mechanics (symmetric matrices, Hermi-
tian matrices, and the more general category of normal matrices) can be diagonalized

by a unitary change of basis: D =
(
λ1 0 ···
0 λ2 ···
0 0 ···

)
= U †MU , with U † = (UT )∗ = U−1.

Thus Mn = (UDU †)n = UD(U †U)D · · ·DU † = UDnU †. For these matrices, we can
compute the exponential of a matrix by doing a coordinate change to the basis that
diagonalizes it:

exp(M) =
∞∑
n=0

Mn/n! =
∞∑
n=0

UDnU †/n! = U

(
∞∑
n=0

Dn/n!

)
U † = U

(
eλ1 0 ···
0 eλ2 ···
0 0 ···

)
U † (3)

Let’s apply this to the time evolution operator exp(−iHt/~) for the Hamiltonian we
studied in the Eigen exercise (3.1): H =

(
0 −4
−4 6

)
.

(c) Apply the relation eqn 3 to calculate the 2× 2 time evolution operator exp(−iHt/~)
for our Hamiltonian. Apply the resulting time evolution operator to the state ψ(0) = ( 1

0 )
to calculate ψ(t). Also write the time evolved state as

∑
n exp(−iEnt/~)|n〉〈n|ψ〉, where

|n〉 are the eigenstates of H. Do the two methods agree?

4.2 Light Proton Atomic Size. (Dimensional Analysis) ©3
In this exercise, we examine a parallel world where the proton and neutron masses are
equal to the electron mass, instead of ∼2000 times larger.

In solving the hydrogen atom in your undergraduate quantum course, you may have
noted that in going from the 6-dimensional electron-proton system into the three-
dimensional center-of-mass coordinates, the effective mass gets shifted to a reduced
mass mred = µ = 1/(1/me + 1/mnucleus), and is otherwise the hydrogen potential with
a fixed (infinite-mass) nucleus. Let us assume that the atomic sizes and the excitation
energies are determined solely by this mass shift.

What is the reduced mass for the hydrogen atom in the parallel world of light protons,
compared to the electron mass? How much larger will the atom be? How much will the
binding energy of the atom change? (You may approximate Mp ∼ ∞ when appropriate.)
(Units hint: [~] = ML2/T , [ke2] = Energy ∗ L = ML3/T 2, and [me] = M . Here k = 1
in CGS units, and k = 1/(4πε0) in SI units.)

4.3 δ-function bound states. (Sakurai Exercise 2.24) ©
Consider a particle in one dimension bound to a fixed center by a δ-function potential
of the form

V (x) = −ν0δ(x), (ν0 real and positive).

Find the wave function and the binding energy of the ground states. Are there excited
bound states?



4.4 Baker-Campbell-Hausdorff identity. (Expanded upon from Gottfried & Yan ex-
ercise 2.13.) ©3
For operators A and B, we know eA+B 6= eAeB unless A and B commute, so C =
[A,B] = 0. The BCH theorem tells us that, for any two linear operators A and B, that

eAeB = exp(A+B + 1/2[A,B] + 1/12([A, [A,B]− [B, [A,B]]) . . . ) (4)

where . . . alludes to multiple commutators of even higher order.

We start with the special case where A and B do not commute with each other but
which both commute with [A,B]. In that case, they satisfy

eA+B = eAeBe−
1/2[A,B] (5)

(a) Examine the power series of both sides. Show that they agree at low orders.

(b) To prove this, first show that [B, exA] = exA[B,A]x, where x is a scalar (a number,
which commutes with everything). Next, define G(x) = exAexB and show that

dG

dx
= (A+B + [A,B]x)G. (6)

Integrate this to obtain the desired result.

(c) Let K and P be two non-commuting operators (e.g., the kinetic and potential energy
parts of the Hamiltonian H = K + P ). Let ε be small (e.g., idt/~ in a small time-step
U(dt) = exp(−iHdt/~). Show that

eε(K+P ) = eεKeεP +O(ε2) (7)

by explicitly expanding out the power series. What order is the error in the approxima-
tion

eε(K+P ) ≈ eεK/2eεP eεK/2? (8)

(Hint: We have a good reason to do the extra work of adding the third step.)

4.5 Coherent States. (Adapted from Sakurai problem 2.19) ©3
A coherent state of a one-dimensional simple harmonic oscillator is defined to be an
eigenstate of the (non-Hermitian) annihilation operator a:

a|λ〉 = λ|λ〉,

where λ is, in general, a complex number.

(a) Prove that

|λ〉 = e−|λ|
2/2eλa

†|0〉

is a normalized coherent state.



(b) Prove the minimum uncertainty relation for such a state (∆x∆p = ~/2 where ∆x
and ∆p are the root-mean-square fluctuations in position and momentum.)

(c) Write |λ〉 as

|λ〉 =
∞∑
n=0

f(n)|n〉.

Show that the distribution of |f(n)|2 with respect to n is of the Poisson form. Find the
most probable value of n, and hence of E.

(d) Show that a coherent state can also be obtained by applying the translation (finite-
displacement) operator e−ipl/~ (where p is the momentum operator and l is the displace-
ment distance) to the ground state. (See also Gottfried 1966, 262-264).

4.6 Bell.2 (Quantum,Qbit) ©3
Consider the following cooperative game played by Alice and Bob: Alice receives a bit
x and Bob receives a bit y, with both bits uniformly random and independent. The
players win if Alice outputs a bit a and Bob outputs a bit b, such that3

(a+ b = xy) mod 2. (9)

They can agree on a strategy in advance of receiving x and y, but no subsequent
communication between them is allowed.

(a) Give a deterministic strategy by which Alice and Bob can win this game with 3/4
probability.

(b) Show that no deterministic strategy lets them win with more than 3/4 probability.
(Note that Alice has four possible deterministic strategies4 [0, 1, x,∼x], and Bob has
four [0, 1, y,∼y], so theres a total of 16 possible joint deterministic strategies.)

(c) Show that no probabilistic strategy lets them win with more than 3/4 probability. (In
a probabilistic strategy, Alice plays her possible strategies with some fixed probabilities
p0, p1, px, p∼x, and similarly Bob plays his with probabilities q0, q1, qy, q∼y.)

The upper bound of <= 75% of the time that Alice and Bob can win this game provides,
in modern terms, an instance of the Bell inequality, where their prior cooperation
encompasses the use of any local hidden variable.

2This exercise was developed by Paul Ginsparg, based on an example by Bell ’64 with simplifications by
Clauser, Horne, Shimony, & Holt (’69).

3The notation n mod 2 means n modulo two; it is zero if n is even and one if n is odd.
4The notation ∼x means ’not x’; it is zero if x is one and one if x is zero.



Let’s see how they can beat this bound of 3/4, by measuring respective halves of an
entangled state, thus quantum mechanically violating the Bell inequality.5

Suppose Alice and Bob share the entangled state 1√
2
(| ↑ 〉`| ↑ 〉r + | ↓ 〉`| ↓ 〉r), with Alice

holding the left Qbit and Bob holding the right Qbit. Suppose they use the following

strategy: if x = 1, Alice applies the unitary matrix Rπ/6 =

(
cos π

6
− sin π

6

sin π
6

cos π
6

)
to her

Qbit, otherwise doesn’t, then measures in the standard basis and outputs the result

as a. If y = 1, Bob applies the unitary matrix R−π/6 =

(
cos π

6
sin π

6

− sin π
6

cos π
6

)
to his

Qbit, otherwise doesn’t, then measures in the standard basis and outputs the result as
b. (Note that if the Qbits were encoded in photon polarization states, this would be
equivalent to Alice and Bob rotating measurement devices by π/6 in inverse directions
before measuring.)

(d) Using this strategy: (i) Show that if x = y = 0, then Alice and Bob win the game
with probability 1.
(ii) Show that if x = 1 and y = 0 (or vice versa), then Alice and Bob win with proba-
bility 3/4.
(iii) Show that if x = y = 1, then Alice and Bob win with probability 3/4.
(iv) Combining parts (i)–(iii), conclude that Alice and Bob win with greater overall
probability than would be possible in a classical universe.

This proves an instance of the CHSH/Bell Inequality, establishing that “spooky action
at a distance” cannot be removed from quantum mechanics. Alice and Bob’s ability
to win the above game more than 3/4 of the time using quantum entanglement was
experimentally confirmed in the 1980s (A. Aspect et al.).6

(e) (Bonus) Consider a slightly different strategy, in which before measuring her half
of the entangled pair Alice does nothing or applies Rπ/4, according to whether x is 0
or 1, and Bob applies Rπ/8 or R−π/8, according to whether y is 0 or 1. Show that this
strategy does even better than the one analyzed in a–c, with an overall probability of
winning equal to cos2 π/8 = (1 +

√
1/2)/2 ≈ .854.

(Extra bonus) Show this latter strategy is optimal within the general class of strategies
in which before measuring Alice applies Rα0 or Rα1, according to whether x is 0 or 1,
and Bob applies Rβ0 or Rβ1, according to whether y is 0 or 1.

5Remember the GHZ state, where three people have to get a+b+c mod 2 = x or y or z. Again one can
achieve only 75% success classically, but they can win every time sharing the right quantum state.

6Ordinarily, an illustration of these inequalities would appear in the physics literature not as a game but as
a hypothetical experiment. The game formulation is more natural for computer scientists, who like to think
about different parties optimizing their performance in various abstract settings. As mentioned, for physicists
the notion of a classical strategy is the notion of a hidden variable theory, and the quantum strategy involves
setting up an experiment whose statistical results could not be predicted by a hidden variable theory.



This will demonstrate that no local hidden variable theory can reproduce all predictions
of quantum mechanics for entangled states of two particles.

4.7 Harmonic oscillators and symbolic manipulation. (Computation) ©3
In this exercise, we shall use symbolic manipulation environments (Mathematica or
SymPy) to explore the raising and lowering operators a and a†. We’ll use them to gen-
erate the position-space eigenstates ψn(x), along with their associated Hermite polyno-
mials. We’ll distinguish between analytical calculations (paper and pencil) and symbolic
calculations (using the symbolic manipulation package on the computer).

Remember that the Hamiltonian for a simple harmonic oscillator7 is

H = p2/2m+ 1/2mω
2x2. (10)

with

p = −i~
∂

∂x
(11)

The ground state probability distribution is a Gaussian of width a0 =
√
~/2mω, so

ψ0(x) = (mω/π~)1/4e−mωx
2/(2~). (12)

For plots, we’ll take constants from McEuen’s bouncing buckyballs (Park et al., “Nanome-
chanical oscillations in a single-C60 transistor”, Nature 407, 57 (2000)). Thus m ≈
60 ∗ 12amu, with an amu = 1.66054e-24 gm, ~ ≈ 1.0545716 × 10−27 erg sec, and
ω = 1.2THz.

(a) Do a symbolic integration to check if ψ0 is properly normalized. Plot ψ0 from −4a0
to 4a0 using McEuen’s constants. How do the zero-point fluctuations for McEuen’s
buckyball compare to the size of an atom?

(b) Define an operator H(ψ) that symbolically takes a function ψ(x) = |ψ〉 and returns
another function H|ψ〉. Symbolically calculate the ground state energy E0 = H(ψ0)/ψ0.
(Hint: it should be independent of x.)

Remember that the ladder operators are written in terms of the position and momen-
tum:

a =
√
mω/2~(x+ ip/mω) (13)

a† =
√
mω/2~(x− ip/mω) (14)

Remember the number operator N = a†a.

(c) Using the commutation relation [x, p] = i~, analytically (paper and pencil) show that
(N + 1/2)~ω = H, [a, a†] = 1, [N, a†] = a†, and [N, a] = −a.

(d) Using the commutation relations from above, analytically show that H(a†)nψ0 =
(n+ 1/2)~ω(a†)nψ0, so ψn ∝ (a†)nψ0.

7The spring constant K = mω2; this gives ω =
√

K/m, which may be more familiar.



(e) As in parts (b), symbolically define the operator p from eqn 11. Using it, define the
operator a†(ψ). Symbolically calculate E1 = H

(
a†ψ0)

)
/a†ψ0. Is it normalized?

(f) Symbolically, is a†a†ψ0 normalized? Calculate symbolically the norm of higher pow-
ers of (a†)nψ0 until you figure out what we need to divide it by to normalize it.

(g) Analytically calculate the norm of (a†)nψ0, using the commutation relations of
part (c). Does it agree with your conclusion of part (f)?

(h) Symbolically define ψn recursively in terms of ψn−1, using the proper normalization
from parts (f) and (g). Evaluate it symbolically for n = 1, 2, 3, 4.

(i) Using McEuen’s buckyball constants, plot ψn(x) for n = 1, 2, 3, 4 for −5a0 < x <
5a0.


