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Potentially useful reading
Sakurai and Napolitano, sections 2.3 (coherent states), 2.6 (path integrals), 3.4 (density
matrices)
Schumacher & Westmoreland section 13.3 (coherent states)
Weinberg section 3.2 (delta functions), section 9.6 (Greens functions)
P.W. Anderson, “Basic Notions of Condensed Matter Physics”, section 3E p. 107-113
(advanced Green’s functions)

5.1 Dirac é-functions. (Math) @

Quantum bound-state wavefunctions are unit vectors in a complex Hilbert space. If
there are N particles in 3 dimensions, the Hilbert space is the space of complex-valued
functions 1 (x) with x € R*" whose absolute squares are integrable: [ dx]|¢(x)|?

But what about unbound states? For example, the propagating plane-wave states
Y(x) = |k) < exp(—ikx) for a free particle in one dimension? Because unbound states
are spread out over an infinite volume, their probability density at any given point is
zero — but we surely don’t want to normalize |k) by multiplying it by zero.

Mathematicians incorporate continuum states by extending the space into a rigged
Hilbert space. The trick is that the unbound states form a continuum, rather than
a discrete spectrum — so instead of summing over states to decompose wavefunctions

|p) = 1¢ = >_, |n)(n|¢) we integrate over states ¢ = 1o = [dk|k)(k|¢). This tells

< 00.

us how we must normalize our continuum wavefunctions: instead of the Kronecker-

0 function (m|n) = 0., enforcing orthonormal states, we demand |k') = 1|k’
[ Ak |kYK|E) = |K') = [ dk |k)o(k — E') telling us that (k|k') = d(k — k') is needed to
ensure the useful decomposition 1 = [ dk|k)(k|.

Let’s work out how this works as physicists, by starting with the particles in a box, and
then taking the box size to infinity. For convenience, let us work in a one dimensional
box —L/2 < x < L/2, and use periodic boundary conditions, so (—L/2) = (L/2)
and ¢'(—L/2) = /(L/2). This choice allows us to continue to work with plane-wave
states |n) o< exp(—ik,x) in the box. (We could have used a square well with infinite
sides, but then we’d need to fiddle with wave-functions o sin(kx).)

(a) What values of k,, are allowed by the periodic boundary conditions? What is the
separation Ak between successive wavevectors? Does it go to zero as L — 0o, leading
to a continuum of states?



To figure out how to normalize our continuum wavefunctions, we now start with the
relation (m|n) = d,,, and take the continuum limit. We want the normalization Ny of
the continuum wavefunctions to give [~ NyNy exp(—i(k’' — k)z)dz = §(k' — k).

(b) What is the normalization (x|n) = N, exp(ikn,x) for the discrete wave-functions in
the periodic box, to make (m|n) = f_j:ﬁQ NNy exp(—i(ky, — kp)x)de = 6 ? Write
1 =Y, In)(n|, and change the sum to an integral in the usual way ([ dk|k){k| ~
>, Ak|n)(n|). Show that the normalization of the continuum wavefunctions must be
Ny, = 1/3/27, so vy(x) = (z|k) = exp(ikx)/v/2r. (Hint: If working with operators is
confusing, ensure that (z|1|2) for —L/2 < x,2’ < L/2 is the same for 1 = ) |n)(n]
(valid in the periodic box) and for 1 = [ dk|k)(k| (valid for all z).

Notice some interesting ramifications:

I. The fact that our continuum plane waves have normalization 1/+/27 incidentally tells
us one form of the ¢ function:

Sk — k) = (k|K') = % / e KRz, (1)

—0o0

Also, §(2' —x) = 1/(2n) [7_dkexp(ik(z’ — x)).

II. The same normalization is used for ‘position eigenstates’ |z), so (z'|x) = é(2’ — x)
and 1 = [ dz|z)(z|.

III. The Fourier transform can be viewed as a change of variables from the basis |x) to
the basis |k):

o(k) = (klo) = (k[1]0)
— [ da(iia)alo) 2)
= 1/\/%/dxexp(—ikx)¢(x)

Note that this definition is different from that I used in the appendix of my book (Sta-
tistical Mechanics: Entropy, Order Parameters, and Complexity, http://pages.physics.
cornell.edu/~sethna/Stat Mech/EntropyOrderParametersComplexity.pdf); there the 27
is placed entirely on the inverse Fourier transform, which here it is split symmetrically
between the two, so the inverse Fourier transform is

o(x) = (al¢) = {x]1]9) 3)
=/Huﬂ@ww> (4)
=1/V2r / dk exp(ikz) (k).



IV. The Dirac d-function can be written in many different ways. It is basically the
limit! as € — 0 of sharply-peaked, integral-one functions of width ¢ and height 1/e
centered at zero. Let’s use this to derive the useful relation:

1
lim -
e—0+ 1 — i€

_ p.vé +ind(z). (5)

Here all these expressions are meant to be inside integrals, and p.v. is the Cauchy
principal value of the integral:?

pov. / - lm / / (6)

(c) Note that €/(z* + €*) has half-width € at half-mazimum, height €, and integrates
to m, so basically (i.e., in the weak limit) lim_,q €/(2? + €%) = 7d(x). Argue that
lime o [ f(z)/(z—ie)dz = pv. [ f(x)/xde+inf(0). (Hints: The integral of 1/(14y?)
is arctan(y), which becomes +7/2 at y = +o0o. Multiply numerator and denominator
by = + ie.)

5.2 Momentum Space Propagator. (Sakurai Exercise 2.33)
As given in Eq.(2.6.26) in Sakurai, the propagator in position space is

S (x"a’) (d[x') exp [—_iE“'rgt_tO)L
= Yo x"exp (ZE) |a) (/| exp () [x)

K" t;x/,t)

The analogous propagator in momentum space is given by (p” t|p’,to). Derive an
explicit expression for (p”,t|p’,to) for the free particle case.

5.3 Harmonic oscillator spectrum: The propagator. (Path integrals) @

(a) Show that the trace of the propagator can be written in terms of the energy eigen-
values:

/ K(,ty; 2, t1)dz = Y~ exp(—iB,(ty — t1)/h). (7)
(Hint: write

K=<172|U(2—t1)|$1> (ol H2mt0/P )

= (wa[Le7 270 My

1Clearly this is not a limit in the ordinary sense: the difference between functions does not go to zero as
€ goes to zero, but rather (within e of the origin) has large positive and negative values that cancel. It is a
weak limit — when integrated against any smooth functions, the differences go to zero.

If f(z) is positive at zero, [ f(x)/xdx is the sum of minus infinity for < 0 and positive infinity for
x > 0; taking the principal value tells us to find the sum of these two canceling infinities by chopping them
symmetrically about zero.



5.4

and insert a complete set of energy eigenstates for 1.)

(b) Sum the geometrical series in eqn 7 for a one-dimensional harmonic oscillator of
frequency w.

The propagator for the harmonic oscillator is

mw
2mihsin(w(ty — t1))

Kpo(xg, ta;x1,t) :\/
imw
QhSiH(W(tQ — t1)>

exp [ {(z3 + 22) cos(w(ty — t1)) — 22971)

(There is a typo in Sakurai’s formula 2.6.18).
(c) Write Kgo(x,ty, z,t1) = f(t) exp(—iA(t)z?). Fuvaluate the trace. Show that you get

the same answer as part (b). (Hint: Use the Gaussian integral formula [°°_exp(—iA(t)z?) =

/7 /(iA). You may want to use the half-angle formula sin(a/2) = /(1 — cos(a).)
Aharonov-Bohm Wire. (ParallelTransport) @)

What happens to the electronic states in a thin metal loop as a magnetic flux ®p
is threaded through it? This was a big topic in the mid-1980’s, with experiments
suggesting that the loops would develop a spontaneous current, that depended on the
flux ®p/Py, with &g = hc/e the ‘quantum of flux’ familiar from the Bohm-Aharnov
effect. In particular, Nandini Trivedi worked on the question while she was a graduate
student here:

Nandini Trivedi and Dana Browne, ‘Mesoscopic ring in a magnetic field:
Reactive and dissipative response’, Phys. Rev. B 38, 9581-9593 (1988);

she’s now a faculty member at Ohio State.

Some of the experiments clearly indicated that the periodicity in the current went as
®y/2 = hc/2e — half the period demanded by Bohm and Aharonov from fundamental
principles. (This is OK; having a greater period would cause one to wonder about
fractional charges.) Others found (noisier) periods of ®;. Can we do a free-particle-on-
a-ring calculation to see if for some reason we get half the period too?

Consider a thin wire loop of radius R along z? + y?> = R2. Let a solenoid containing
magnetic flux ® g, thin compared to R, lie along the 2 axis, with effectively no magnetic
field outside the solenoid. Let ¢ be the angle around the circle with respect to the
positive z-axis. (Don’t confuse the flux &5 with the angle ¢!) We'll assume the
wire confines the electron to lie along the circle, so we’re solving a one-dimensional
Schrodinger’s equation along the coordinate s = R¢ around the circle. Assume the
electrons experience an arbitrary potential V'(s) along the circumference C' = 27 R of
the wire loop.?

3You may imagine this potential as due to random imperfections or impurities in the wire loop.



(a) IfA = a(r)é, what is the value of a(R) for a solenoid flur ®p?

(b) Using this A field, write the one-dimensional time-independent Schrodinger equa-
tion giving the eigenenergies for electrons on this ring. What is the boundary conditions
for the electron wavefunction ¥ at s = 0 and s = C'? (Hint: the wire is a circle; no
parallel transport yet. I'm not asking you to solve the equation — only to write it
down.)

Deriving the Bohm-Aharonov effect using Schrodinger’s equation is easiest done using
a singular gauge transformation.*

(¢) Consider the gauge transformation A(r, ¢) = —¢®p/(27). Show that A’ = A + VA
1s zero along the wire for 0 < s < C, so that we are left with a zero-field Schrodinger
equation. What happens at the endpoint C'¢ What is the new boundary condition for
the electron wave function ' after this gauge transformation? Does the effect vanish
for ®g = n® for integer n, as the Bohm-Aharonov effect says it should?

Realistically, the electrons in a large, room-temperature wire get scattered by phonons
or electron-hole pairs (effectively, a quantum measurement of sorts) long before they
propagate around the whole wire, so these effects were only seen experimentally when
the wires were cold (to reduce phonons and electron-hole pairs) and ‘mesoscopic’ (tiny,
so the scattering length is comparable to or larger than the circumference).

Finally, let’s assume free electrons, so V' (s) = 0. What’s more, to make things simpler,
let’s imagine that there is only one electron in the wire.

(d) Ignoring the energy needed to confine the electrons into the thin wire, solve the one-
dimensional Schrodinger equation to give the ground state of the electron as a function
of ®p. Plot the current’ in the wire as a function of ®g. Is it periodic with period ®o,
or periodic with period ®y/27

In the end, it was determined that there were two classes of experiments. Those that
measured many rings at once (measuring an average current, an easier experiment)
got periodicity of hc/2e, while those that attempted the challenge of measuring one
mesoscopic ring at a time find hc/e.

5.5 Evolving Schrédinger: Coherent states. (Computation) 3

In this exercise, we shall build upon the numerical work of exercise 3.6 (free particle
evolution), exercise 4.2 (Baker-Campbell Hausdorff idenity), and exercise 4.3 (Coher-
ent States). We shall solve the time-dependent Schrodinger equation for a harmonic
oscillator in its ground state, and after the ground state is translated to the side by a
distance xg.

4You could just solve the original Schrédinger equation. But by doing the singular gauge transformation,
you are left with a familiar Schrédinger equation without an A field, albeit with a funny boundary condition.
This is the probability current J. In the absence of a field, J = (h/(2mi)(¢* Ve — ¢ V¢*). (If you don’t
already recognize this formula, look up the derivation!) Since the probability current is a physical quantity,
it must be gauge invariant, so you can use this same formula in the singular gauge to estimate the current.



The time-dependent Schrodinger equation for our one-dimensional quantum system is:

N 1 —
1h§ = —%@ + V(ZU)ZZJ — HT/J - Hkindj + HPOt%Z}

Y(t) = U)ip(0) = e H11/Pyp(0) = e~ Hiant/I=ilwart iy () (8)

As in the last exercise, we use the constants for McEuen’s bouncing buckyballs, with
m = 60mc ~ 12 % 60m, and the frequency to w = 10'? radians/sec, and will evaluate
it at N, = 200 points spanning L = 30ay,

In the free particle example (no potential energy), we advanced time by dt by multi-
plying the Fourier transform by U, (k,dt) = exp(i(h*k?/2m)dt/h). If, on the other
hand, there were no kinetic energy (infinite mass), we could solve for the time evolu-
tion ¢ (z,t) = Upot () (x,t = 0) by multiplying ¢(z) in real space by a time-dependent
phase depending on position:

Y(x,t+ dt) = Upor(dt))(, ) = e Heordt/ o) (g ¢)
_ e_iv(:”)dt/hl/)(x, t). (9)

To approximately solve Schrodinger’s time evolution, we alternate advancing the wave
function in real space and Fourier space, using the Baker-Campbell-Hausdorff formula
of exercise 4.2(b):

w(t + dt) _ e_inint/h_inOtt/hw(O) ~ e—inott/2ﬁe—inint/he—iHDOtt/2h¢(0) — Upot (10)

(a) Define the two arrays UkinTildeDt and UpotDtOver2. Define the initial wave-
function ¥[0](x). (Hint: If your implementation stores i[n|[z] as a two-dimensional
complex array, you may want to allocate it and initialize ¥[0][x] as part of that array.)

(b) Ewvolve the wavefunction to a time equal to twice the period P of the oscillator, in
steps of dt = P/100, storing your answer after each step. Plot ¢(x, P/5), showing the
real part, the imaginary part, and the absolute value all on the same graph. (Why don’t
we plot |¢?(x)| on this graph?) If possible, animate these three curves; otherwise, plot
several snapshots until you see the evolution. What happens to the probability density?
Why? What happens to the real and imaginary parts? Why?

(¢) Now shift the wavefunction ¥ (z,t = 0) = o(x — 20), with xo = 10ay, where aqy is
the root-mean-square width of the ground state wavefuction (see exercise 3.6). Time

evolve as in part (b). How does the evolution compare to a classical particle in the
harmonic well?

(d) Using your answer to exercise 4.3(d), write the initial wavefunction for part (c) in
terms of a coherent state. What is \?

For photons and phonons and other harmonic systems, the coherent states evolve just
as classical particles would.



5.6 Coherent State Evolution. (Operator algebra) @

Consider the annihilation operator a for a simple harmonic oscillator, transformed into
the time-dependent Heisenberg-representation operator ag(t):

an(t) = " ae M = Ut ()al (t). (11)

The time evolution for an operator in the Heisenberg representation is given by the
commutator with the Hamiltonian, so
—— = —ay —ag— = —i/hlay, H|. 12
G~ panTang /hlan, H] (12)
You may use the fact that the Hamiltonian for the harmonic oscillator in the Schrodinger
representation is H = hw(a'a + %), and that [a,al] = 1.

(a) Calculate [ag, H], and write it in terms of ag. What is day/dt? (Simplify your
answers until they only involve ay and constants, not H or a.)

(b) Show that ap(t) = exp(—iwt)an(0) = exp(—iwt)a is the solution to the time evolu-
tion you found in part (a). (Hint: This can also be a check for part (a).)

We discovered in exercise 5 that the probability density for a displaced harmonic oscil-
lator ground state oscillates like a classical particle with the oscillator frequency w. In
another exercise, we showed that a displaced harmonic oscillator ground state is one
example of a coherent state, an eigenstate of the annihilation operator a:

alA) = A[N), (13)

which is also normalized (A|A) = 1. Here A € C can be any complex number.

(c) In the Schridinger representation® show that a coherent state |\) evolves after a
time t to a state |§) = U(t)|\) which is also an eigenstate of the annihilation operator
a. What is its eigenvalue \? (Hints: Multiply a|¢) = aU(t)|A) on the left by 1 =
U(t)U(—t) and use part (b). You don’t need to compute U(t)|\), you just need to show
it is an eigenstate of a.)

Since there is only one coherent state with eigenvalue X\, our evolved state U(t)|\)
C|A) for some constant C'. Since time evolution conserves probability (and hence U(t)
is unitary), (\|UT()U (t)|\) = |C|*> = 1, so C is a pure phase.

It so happens that, for the standard definition of coherent states, the phase C' is inde-
pendent of A\, but depends on time.

(d) Calculate C(t) for the special case A = 0. (Hint: the coherent state with A = 0 is
the ground state of the harmonic oscillator. You don’t need to know the solutions of
previous sections to solve this.)

6As opposed to the Heisenberg representation of part (b).



