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Potentially useful reading
Sakurai and Napolitano, sections 2.3 (coherent states), 2.6 (path integrals), 3.4 (density

matrices)
Schumacher & Westmoreland section 13.3 (coherent states)

Weinberg section 3.2 (delta functions), section 9.6 (Greens functions)
P.W. Anderson, “Basic Notions of Condensed Matter Physics”, section 3E p. 107-113

(advanced Green’s functions)

5.1 Dirac δ-functions. (Math) ©3
Quantum bound-state wavefunctions are unit vectors in a complex Hilbert space. If
there are N particles in 3 dimensions, the Hilbert space is the space of complex-valued
functions ψ(x) with x ∈ R3N whose absolute squares are integrable:

∫
dx|ψ(x)|2 <∞.

But what about unbound states? For example, the propagating plane-wave states
ψ(x) = |k〉 ∝ exp(−ikx) for a free particle in one dimension? Because unbound states
are spread out over an infinite volume, their probability density at any given point is
zero – but we surely don’t want to normalize |k〉 by multiplying it by zero.

Mathematicians incorporate continuum states by extending the space into a rigged
Hilbert space. The trick is that the unbound states form a continuum, rather than
a discrete spectrum – so instead of summing over states to decompose wavefunctions
|φ〉 = 1φ =

∑
n |n〉〈n|φ〉 we integrate over states φ = 1φ =

∫
dk |k〉〈k|φ〉. This tells

us how we must normalize our continuum wavefunctions: instead of the Kronecker-
δ function 〈m|n〉 = δmn enforcing orthonormal states, we demand |k′〉 = 1|k′〉 =∫

dk |k〉〈k|k′〉 = |k′〉 =
∫

dk |k〉δ(k − k′) telling us that 〈k|k′〉 = δ(k − k′) is needed to
ensure the useful decomposition 1 =

∫
dk |k〉〈k|.

Let’s work out how this works as physicists, by starting with the particles in a box, and
then taking the box size to infinity. For convenience, let us work in a one dimensional
box −L/2 ≤ x < L/2, and use periodic boundary conditions, so ψ(−L/2) = ψ(L/2)
and ψ′(−L/2) = ψ′(L/2). This choice allows us to continue to work with plane-wave
states |n〉 ∝ exp(−iknx) in the box. (We could have used a square well with infinite
sides, but then we’d need to fiddle with wave-functions ∝ sin(kx).)

(a) What values of kn are allowed by the periodic boundary conditions? What is the
separation ∆k between successive wavevectors? Does it go to zero as L → ∞, leading
to a continuum of states?



To figure out how to normalize our continuum wavefunctions, we now start with the
relation 〈m|n〉 = δmn and take the continuum limit. We want the normalization Nk of
the continuum wavefunctions to give

∫∞
−∞NkNk′ exp(−i(k′ − k)x)dx = δ(k′ − k).

(b) What is the normalization 〈x|n〉 = Nn exp(iknx) for the discrete wave-functions in

the periodic box, to make 〈m|n〉 =
∫ L/2
−L/2NnNm exp(−i(km − kn)x)dx = δmn? Write

1 =
∑

n |n〉〈n|, and change the sum to an integral in the usual way (
∫

dk |k〉〈k| ≈∑
n ∆k |n〉〈n|). Show that the normalization of the continuum wavefunctions must be

Nk = 1/
√

2π, so ψk(x) = 〈x|k〉 = exp(ikx)/
√

2π. (Hint: If working with operators is
confusing, ensure that 〈x|1|x′〉 for −L/2 < x, x′ < L/2 is the same for 1 =

∑
n |n〉〈n|

(valid in the periodic box) and for 1 =
∫

dk|k〉〈k| (valid for all x).

Notice some interesting ramifications:

I. The fact that our continuum plane waves have normalization 1/
√

2π incidentally tells
us one form of the δ function:

δ(k′ − k) = 〈k|k′〉 =
1

2π

∫ ∞
−∞

e−i(k
′−k)xdx. (1)

Also, δ(x′ − x) = 1/(2π)
∫∞
−∞ dk exp(ik(x′ − x)).

II. The same normalization is used for ‘position eigenstates’ |x〉, so 〈x′|x〉 = δ(x′ − x)
and 1 =

∫
dx|x〉〈x|.

III. The Fourier transform can be viewed as a change of variables from the basis |x〉 to
the basis |k〉:

φ̃(k) = 〈k|φ〉 = 〈k|1|φ〉

=

∫
dx〈k|x〉〈x|φ〉 (2)

= 1/
√

2π

∫
dx exp(−ikx)φ(x)

Note that this definition is different from that I used in the appendix of my book (Sta-
tistical Mechanics: Entropy, Order Parameters, and Complexity, http://pages.physics.
cornell.edu/∼sethna/Stat Mech/EntropyOrderParametersComplexity.pdf); there the 2π
is placed entirely on the inverse Fourier transform, which here it is split symmetrically
between the two, so the inverse Fourier transform is

φ(x) = 〈x|φ〉 = 〈x|1|φ〉 (3)

=

∫
dk〈x|k〉〈k|φ〉 (4)

= 1/
√

2π

∫
dk exp(ikx)φ̃(k).



IV. The Dirac δ-function can be written in many different ways. It is basically the
limit1 as ε → 0 of sharply-peaked, integral-one functions of width ε and height 1/ε
centered at zero. Let’s use this to derive the useful relation:

lim
ε→0+

1

x− iε
= p.v.

1

x
+ iπδ(x). (5)

Here all these expressions are meant to be inside integrals, and p.v. is the Cauchy
principal value of the integral:2

p.v.

∫ ∞
−∞

= lim
ε→0+

∫ −ε
−∞

+

∫ ∞
ε

. (6)

(c) Note that ε/(x2 + ε2) has half-width ε at half-maximum, height ε, and integrates
to π, so basically (i.e., in the weak limit) limε→0 ε/(x

2 + ε2) = πδ(x). Argue that
limε→0

∫
f(x)/(x−iε)dx = p.v.

∫
f(x)/x dx+iπf(0). (Hints: The integral of 1/(1+y2)

is arctan(y), which becomes ±π/2 at y = ±∞. Multiply numerator and denominator
by x+ iε.)

5.2 Momentum Space Propagator. (Sakurai Exercise 2.33) ©2
As given in Eq.(2.6.26) in Sakurai, the propagator in position space is

K(x′′, t;x′, t0) =
∑

a′〈x′′|a′〉〈a′|x′〉 exp
[
−iEa′ (t−t0)

~

]
=

∑
a′〈x′′| exp

(−iHt
~

)
|a′〉〈a′| exp

(
iHt0
~

)
|x′〉

The analogous propagator in momentum space is given by 〈p′′, t|p′, t0〉. Derive an
explicit expression for 〈p′′, t|p′, t0〉 for the free particle case.

5.3 Harmonic oscillator spectrum: The propagator. (Path integrals) ©3
(a) Show that the trace of the propagator can be written in terms of the energy eigen-
values: ∫ ∞

−∞
K(x, t2;x, t1)dx =

∑
n

exp(−iEn(t2 − t1)/~). (7)

(Hint: write

K = 〈x2|U(t2 − t1)|x1〉 = 〈x2|e−iH(t2−t1)/~|x1〉
= 〈x2|1e−iH(t2−t1)/~|x1〉

1Clearly this is not a limit in the ordinary sense: the difference between functions does not go to zero as
ε goes to zero, but rather (within ε of the origin) has large positive and negative values that cancel. It is a
weak limit – when integrated against any smooth functions, the differences go to zero.

2If f(x) is positive at zero,
∫
f(x)/xdx is the sum of minus infinity for x < 0 and positive infinity for

x > 0; taking the principal value tells us to find the sum of these two canceling infinities by chopping them
symmetrically about zero.



and insert a complete set of energy eigenstates for 1.)

(b) Sum the geometrical series in eqn 7 for a one-dimensional harmonic oscillator of
frequency ω.

The propagator for the harmonic oscillator is

KHO(x2, t2;x1, t1) =

√
mω

2πi~ sin(ω(t2 − t1))

exp

[
imω

2~ sin(ω(t2 − t1))
{(x22 + x21) cos(ω(t2 − t1))− 2x2x1)

]
.

(There is a typo in Sakurai’s formula 2.6.18).

(c) Write KHO(x, t2, x, t1) = f(t) exp(−iA(t)x2). Evaluate the trace. Show that you get
the same answer as part (b). (Hint: Use the Gaussian integral formula

∫∞
−∞ exp(−iA(t)x2) =√

π/(iA). You may want to use the half-angle formula sin(a/2) =
√

1/2(1− cos(a).)

5.4 Aharonov-Bohm Wire. (ParallelTransport) ©3
What happens to the electronic states in a thin metal loop as a magnetic flux ΦB

is threaded through it? This was a big topic in the mid-1980’s, with experiments
suggesting that the loops would develop a spontaneous current, that depended on the
flux ΦB/Φ0, with Φ0 = hc/e the ‘quantum of flux’ familiar from the Bohm-Aharnov
effect. In particular, Nandini Trivedi worked on the question while she was a graduate
student here:

Nandini Trivedi and Dana Browne, ‘Mesoscopic ring in a magnetic field:
Reactive and dissipative response’, Phys. Rev. B 38, 9581-9593 (1988);

she’s now a faculty member at Ohio State.

Some of the experiments clearly indicated that the periodicity in the current went as
Φ0/2 = hc/2e – half the period demanded by Bohm and Aharonov from fundamental
principles. (This is OK; having a greater period would cause one to wonder about
fractional charges.) Others found (noisier) periods of Φ0. Can we do a free-particle-on-
a-ring calculation to see if for some reason we get half the period too?

Consider a thin wire loop of radius R along x2 + y2 = R2. Let a solenoid containing
magnetic flux ΦB, thin compared to R, lie along the ẑ axis, with effectively no magnetic
field outside the solenoid. Let φ be the angle around the circle with respect to the
positive x-axis. (Don’t confuse the flux ΦB with the angle φ!) We’ll assume the
wire confines the electron to lie along the circle, so we’re solving a one-dimensional
Schrödinger’s equation along the coordinate s = Rφ around the circle. Assume the
electrons experience an arbitrary potential V (s) along the circumference C = 2πR of
the wire loop.3

3You may imagine this potential as due to random imperfections or impurities in the wire loop.



(a) If ~A = a(r)φ̂, what is the value of a(R) for a solenoid flux ΦB?

(b) Using this ~A field, write the one-dimensional time-independent Schrödinger equa-
tion giving the eigenenergies for electrons on this ring. What is the boundary conditions
for the electron wavefunction ψ at s = 0 and s = C? (Hint: the wire is a circle; no
parallel transport yet. I’m not asking you to solve the equation – only to write it
down.)

Deriving the Bohm-Aharonov effect using Schrödinger’s equation is easiest done using
a singular gauge transformation.4

(c) Consider the gauge transformation Λ(r, φ) = −φΦB/(2π). Show that ~A′ = ~A+∇Λ
is zero along the wire for 0 < s < C, so that we are left with a zero-field Schrödinger
equation. What happens at the endpoint C? What is the new boundary condition for
the electron wave function ψ′ after this gauge transformation? Does the effect vanish
for ΦB = nΦ0 for integer n, as the Bohm-Aharonov effect says it should?

Realistically, the electrons in a large, room-temperature wire get scattered by phonons
or electron-hole pairs (effectively, a quantum measurement of sorts) long before they
propagate around the whole wire, so these effects were only seen experimentally when
the wires were cold (to reduce phonons and electron-hole pairs) and ‘mesoscopic’ (tiny,
so the scattering length is comparable to or larger than the circumference).

Finally, let’s assume free electrons, so V (s) = 0. What’s more, to make things simpler,
let’s imagine that there is only one electron in the wire.

(d) Ignoring the energy needed to confine the electrons into the thin wire, solve the one-
dimensional Schrödinger equation to give the ground state of the electron as a function
of ΦB. Plot the current5 in the wire as a function of ΦB. Is it periodic with period Φ0,
or periodic with period Φ0/2?

In the end, it was determined that there were two classes of experiments. Those that
measured many rings at once (measuring an average current, an easier experiment)
got periodicity of hc/2e, while those that attempted the challenge of measuring one
mesoscopic ring at a time find hc/e.

5.5 Evolving Schrödinger: Coherent states. (Computation) ©3
In this exercise, we shall build upon the numerical work of exercise 3.6 (free particle
evolution), exercise 4.2 (Baker-Campbell Hausdorff idenity), and exercise 4.3 (Coher-
ent States). We shall solve the time-dependent Schrödinger equation for a harmonic
oscillator in its ground state, and after the ground state is translated to the side by a
distance x0.

4You could just solve the original Schrödinger equation. But by doing the singular gauge transformation,
you are left with a familiar Schrödinger equation without an ~A field, albeit with a funny boundary condition.

5This is the probability current J. In the absence of a field, J = (~/(2mi)(ψ∗∇ψ − ψ∇ψ∗). (If you don’t
already recognize this formula, look up the derivation!) Since the probability current is a physical quantity,
it must be gauge invariant, so you can use this same formula in the singular gauge to estimate the current.



The time-dependent Schrödinger equation for our one-dimensional quantum system is:

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ = Hψ = Hkinψ +Hpotψ

ψ(t) = U(t)ψ(0) = e−iHt/~ψ(0) = e−iHkint/~−iHpott/~ψ(0) (8)

As in the last exercise, we use the constants for McEuen’s bouncing buckyballs, with
m = 60mC ∼ 12 ∗ 60mp and the frequency to ω = 1012 radians/sec, and will evaluate
it at Np = 200 points spanning L = 30a0,

In the free particle example (no potential energy), we advanced time by dt by multi-
plying the Fourier transform by Ukin(k, dt) = exp(i(~2k2/2m)dt/~). If, on the other
hand, there were no kinetic energy (infinite mass), we could solve for the time evolu-
tion ψ(x, t) = Upot(t)ψ(x, t = 0) by multiplying ψ(x) in real space by a time-dependent
phase depending on position:

ψ(x, t+ dt) = Upot(dt)ψ(x, t) = e−iHpotdt/~ψ(x, t)

= e−iV (x)dt/~ψ(x, t). (9)

To approximately solve Schrödinger’s time evolution, we alternate advancing the wave
function in real space and Fourier space, using the Baker–Campbell–Hausdorff formula
of exercise 4.2(b):

ψ(t+ dt) = e−iHkint/~−iHpott/~ψ(0) ≈ e−iHpott/2~e−iHkint/~e−iHpott/2~ψ(0) = Upot (10)

(a) Define the two arrays UkinTildeDt and UpotDtOver2. Define the initial wave-
function ψ[0](x). (Hint: If your implementation stores ψ[n][x] as a two-dimensional
complex array, you may want to allocate it and initialize ψ[0][x] as part of that array.)

(b) Evolve the wavefunction to a time equal to twice the period P of the oscillator, in
steps of dt = P/100, storing your answer after each step. Plot ψ(x, P/5), showing the
real part, the imaginary part, and the absolute value all on the same graph. (Why don’t
we plot |ψ2(x)| on this graph?) If possible, animate these three curves; otherwise, plot
several snapshots until you see the evolution. What happens to the probability density?
Why? What happens to the real and imaginary parts? Why?

(c) Now shift the wavefunction ψ(x, t = 0) = ψ0(x − x0), with x0 = 10a0, where a0 is
the root-mean-square width of the ground state wavefuction (see exercise 3.6). Time
evolve as in part (b). How does the evolution compare to a classical particle in the
harmonic well?

(d) Using your answer to exercise 4.3(d), write the initial wavefunction for part (c) in
terms of a coherent state. What is λ?

For photons and phonons and other harmonic systems, the coherent states evolve just
as classical particles would.



5.6 Coherent State Evolution. (Operator algebra) ©3
Consider the annihilation operator a for a simple harmonic oscillator, transformed into
the time-dependent Heisenberg-representation operator aH(t):

aH(t) = eiHt/~ae−iHt/~ = U †(t)aU(t). (11)

The time evolution for an operator in the Heisenberg representation is given by the
commutator with the Hamiltonian, so

daH

dt
=

iH
~
aH − aH

iH
~

= −i/~[aH,H]. (12)

You may use the fact that the Hamiltonian for the harmonic oscillator in the Schrödinger
representation is H = ~ω(a†a+ 1/2), and that [a, a†] = 1.

(a) Calculate [aH,H], and write it in terms of aH. What is daH/dt? (Simplify your
answers until they only involve aH and constants, not H or a.)

(b) Show that aH(t) = exp(−iωt)aH(0) = exp(−iωt)a is the solution to the time evolu-
tion you found in part (a). (Hint: This can also be a check for part (a).)

We discovered in exercise 5 that the probability density for a displaced harmonic oscil-
lator ground state oscillates like a classical particle with the oscillator frequency ω. In
another exercise, we showed that a displaced harmonic oscillator ground state is one
example of a coherent state, an eigenstate of the annihilation operator a:

a|λ〉 = λ|λ〉, (13)

which is also normalized 〈λ|λ〉 = 1. Here λ ∈ C can be any complex number.

(c) In the Schrödinger representation6 show that a coherent state |λ〉 evolves after a
time t to a state |ξ〉 = U(t)|λ〉 which is also an eigenstate of the annihilation operator
a. What is its eigenvalue λ̃? (Hints: Multiply a|ξ〉 = aU(t)|λ〉 on the left by 1 =
U(t)U(−t) and use part (b). You don’t need to compute U(t)|λ〉, you just need to show
it is an eigenstate of a.)

Since there is only one coherent state with eigenvalue λ̃, our evolved state U(t)|λ〉 =
C|λ̃〉 for some constant C. Since time evolution conserves probability (and hence U(t)
is unitary), 〈λ|U †(t)U(t)|λ〉 = |C|2 = 1, so C is a pure phase.

It so happens that, for the standard definition of coherent states, the phase C is inde-
pendent of λ, but depends on time.

(d) Calculate C(t) for the special case λ = 0. (Hint: the coherent state with λ = 0 is
the ground state of the harmonic oscillator. You don’t need to know the solutions of
previous sections to solve this.)

6As opposed to the Heisenberg representation of part (b).


