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Potentially useful reading
Sakurai and Napolitano, 2.6 (path integrals)

Weinberg section 9.6 (path integrals, Greens functions)
Feynman and Hibbs chapters 1 & 2 (Path integrals in detail)

6.1 Light Proton Tunneling. (Dimensional Analysis) ©3
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Fig. 1 Atom tunneling. A hydrogen atom tunnels a distance a0, breaking a bond of
strength Ebind equal to its ionization energy.

In this exercise, we continue to examine a parallel world where the proton and neutron
masses are equal to the electron mass, instead of ∼2000 times larger.

With everything two thousand times lighter, will atomic tunneling become important?
Let’s make a rough estimate of the tunneling suppression (given by the approximate
WKB formula exp(−

√
2MVQ/~)).

Imagine an atom hopping between two positions, breaking and reforming a chemical
bond in the process – an electronic energy barrier, and an electronic-scale distance.
The distance will be some fraction of a Bohr radius a0 and the barrier energy will be
some fraction of a Rydberg, but the the atomic mass would be some multiple of the
proton mass.

In our world, what would the suppression factor be for an hydrogen atom of mass ∼Mp

tunneling through a barrier of height V of one Rydberg = ~2/(2mea
2
0), and width Q equal



to the Bohr radius a0? How would this change in the parallel world where Mp → me?
(Simplify your answer as much as possible.) (Use the real-world1 a0 and Rydberg
for the parallel world, not your answers from a previous exercise. Also please use the
simple formula above: don’t do the integral. Your answer should involve only two of
the fundamental constants.)

6.2 Propagators to Path Integrals. (PathIntegrals) ©3
In class, we calculated the propagator for free particles, which Sakurai also calculates
(eqn 2.6.16):

K(x′, t;x0, t0) =

√
m

2πi~(t− t0)
exp

[
im(x′ − x0)2

2~(t− t0)

]
. (1)

Sakurai also gives the propagator for the simple harmonic oscillator (eqn 2.6.18):

K(x′, t;x0, t0) =

√
mω

2πi~ sin[ω(t− t0)]

× exp
[{ imω

2~ sin[ω(t− t0)]

}
(2)[

(x′2 + x2
0) cos[ω(t− t0)]− 2x′x0

] ]
.

In deriving the path integral, Feynman approximates the short-time propagator in a
potential V (x) using the ‘trapezoidal’ rule:

K(x0+∆x, t0 + ∆t;x0, t0) (3)

=N∆t exp

[
i∆t

~
{

1/2m(∆x/∆t)2 − V (x0)
}]

,

where the expression in the curly brackets is the straight-line approximation to the
Lagrangian 1/2mẋ

2−V (x). We’re going to check Feynman’s approximation: is it correct
to first order in ∆t for the free particle and the simple harmonic osillator? For simplicity,
let’s ignore the prefactors (coming from the normalizations), and focus on the terms
inside the exponentials.

Taking t = t0 + ∆t and x′ = x0 + ẋ∆t, expand to first order in ∆t the terms in the
exponential for the free particle propagator (eqn 1) and the simple harmonic oscillator
(eqn 2). Do they agree with Feynman’s formula? (Hint: For the simple harmonic
oscillator, the first term is proportional to 1/∆t, so you’ll need to keep the second term
to second order in ∆t.)

1The reduced mass effects you found in the earlier exercise will be much less important for larger atoms
and molecules, so we shall not include them here.



6.3 Juggling buckyballs. (Path Integrals) ©3
Paul McEuen in Physics and Jiwoong Park in Chemistry here discovered in 2000 that
buckyballs (C60 molecules) bounce inside their transistors.2 Here use path integrals to
discuss how buckyballs evolve under juggling. (We’ll focus on juggling one buckyball,
by throwing it straight up into the air and waiting for it to fall down.) The Lagrangian
for the buckyball is

L = 1/2mẏ
2 −mgy. (4)

(a) In classical mechanics, if the buckyball starts and ends at y = 0 and travels for a
time 2∆t, how high ypeak must its trajectory reach at the midpoint? (Hint: Nothing
tricky yet.)

Feynman tells us that the propagator for a particle starting at (y = yi, t = ti) and
ending at (y = yf , t = tf ) is a path integral over all trajectories y(t):

〈yf |U(tf−ti)|yi〉 =

∫∫∫ yf ,tf

yi,ti

D[y(t)] exp (i/~S[y(t)]) =

∫∫∫ yf ,tf

yi,ti

D[y(t)] exp

(
i/~
∫
Ldt

)
(5)

where the three integral signs represent a suitably normalized integral over all paths
y(t). We, like Feynman, will make a discrete ‘trapezoidal rule’ approximation to the
propagator. As a rough example, we’ll do two segments and only one intermediate
point y2:

S[y(t)] ≈

[
1/2m

(
y3 − y2

∆t

)2

− 1/2mg(y1 + y2)− 1/2mg(y2 + y3) + 1/2m

(
y2 − y1

∆t

)2
]

∆t.

(6)

(b) What intermediate point y∗2 minimizes the trapezoidal action (eqn 6), for general
y1 and y3? For the symmetric path y1 = y3 = 0, how does this compare to the peak of
the trajectory in part (a)? What is the action S∗ = S[y∗2] for this symmetric minimum
action trajectory? (Note: we’re doing an approximation; the heights need not be the
same. Hint: Check units of S∗. Also, does it have the right sign?)

(c) What is our one-point trapezoidal approximation to the propagator

〈y = 0|U(2∆t)|y = 0〉? (7)

(Request: Please write your answer factoring out the contribution from the minimum
action part S∗. Hints: Don’t forget the ‘weight factor’ from Sakurai. You can check
that you’ve included the right number of weight factors by checking the units of your
propagator: at tf = ti, for example, 〈yf |U(0)|yi〉 = δ(yf−yi) has units of inverse length.

Also,
∫∞
−∞ dx exp(−iAx2) =

√
π/iA.)

2See “Nanomechanical oscillations in a single-C60 transistor”, by Hongkun Park, Jiwoong Park, Andrew
K.L. Lim, Erik H. Anderson, A. Paul Alivisatos, and Paul L. McEuen, Nature 407, 57-60 (2000).


