
Problem Set 7: Quantum algorithms and WKB
Graduate Quantum I

Physics 6572
James Sethna

Due Friday Oct. 10
Last correction at October 9, 2014, 1:50 pm

Potentially useful reading
Schumacher & Westmoreland section 7.2 (No-cloning theorems),

and sections 18.1 & 18.2 (quantum algorithms)
Sydney Coleman, “The Uses of Instantons”, sections 1 & 2 (WKB, instantons)

7.1 Mirror path integrals. (Path Integrals) ©3

H
1

B

A

H
2

β

α

Figure 1: Qbit weirdness. A photon, passing through a pair of half-silvered mirrors H1

and H2, undergoes quantum interference between different paths.

One of the most compelling examples of Qbits and their weirdness is provided by the
example of photons and half-silvered mirrors. Fig 1 shows a photon1 coming from the
left in a superposition (αβ), through a set of mirrors, to two detectors named Alice
(A) and Bob (B). We work in the basis |1〉 = (1

0) representing the upper of the two
beams at a given position, and |0〉 = (0

1) representing the lower of two beams. As
discussed in Schumacher & Westmoreland, the half-silvered mirror H2 approximately
acts as a unitary transformation H2 = 1√

2
(1 1
1 −1). The first mirror H1, with its mirrored

side on the top, changes the sign of the beam reflecting from its top, hence 1√
2

(−1 1
1 1).

1We assume, as before, that the polarization of the photon lies perpendicular to the plane of the paper,
so that it remains unchanged and hence unimportant to the interference.

The product G = H2H1 is analogous to the propagator, or Green’s function, for this
system.2

(a) What is G? Given the impinging wave (αβ) from the left, what are the probabilities
PA and PB that Alice and Bob will see the photon? (Hint: Remember Bob did not see
anything when the initial photon came from below.)

We can develop a kind of discrete path integral representation of the propagator G by
writing

G = 1H21H11 =
1∑

xi=0

1∑
xm=0

1∑
xf=0

|xf〉〈xf |H2|xm〉〈xm|H1|xi〉〈xi|. (1)

Here i, m, f representing the initial states, the states in the middle, and the final
(detected) states, and 1 = |1〉〈1| + |0〉〈0|. If we assume the initial photon is coming
from the bottom left (xi = 0), there are four remaining paths in this sum.

A1 =

1
H

2
H

A2 =

1
H

2
H

A3 =

1
H

2
H

A4 =

1
H

2
H

(b) Give the four amplitudes Ai contributed by these four paths. Which ones contribute
to 〈1|G|0〉 = G10? Which ones contribute to 〈0|G|0〉 = G00? Which go to Bob? Do the
sum of the amplitudes going to Bob equal zero (as they should)?

Imagine an electron traversing an electron-mirror array, impinging from below. The
mirrors H1 and H2 have the same effect on the amplitudes as the former half-silvered
ones did for the photon. Here, though, we thread a solenoid between the upper and
lower paths in the middle region, enclosing a net magnetic flux Φ pointing upward out
of the page. The field is zero outside the solenoid, and you may ignore the electron’s
spin.

(c) As a function of Φ, what is the probability that an initial electron will be seen by
Alice? What values of Φ, in multiples of the elementary flux quantum Φ0 = hc/e =
2π~c/e, prevent Alice from seeing any electrons? (Remember, the initial electron
comes from below. Hints:

∮
C
A · d` = Φ if the path C encircles the solenoid counter-

clockwise once. The path-integrand amplitude for x(t) in a field A gains a phase
ζ =

∫
(q/c)A(x) · dx/~. The charge on an electron is q = −e.)

2Note two confusing things in our notation. First, the photon moves from left to right (hitting H1, then
H2), but the matrices describing the evolution propagate from right to left (H2H1). Second, |1〉 = (1

0) is a
vector whose first element is one [zeroth in Python/C], and |0〉 = (0

1) is a vector whose second element is one
[first in Python/C].

2
H

A

B

H
1 Φ

Figure 2: Bohm-Aharonov and mirrors.

7.2 Quantum Algorithms.3 (Quantum Information Processing) ©4
Are quantum computers faster than our standard classical computers?

Clearly, we need to define our terms here – since factoring 143 (the current quantum-
computing world record) doesn’t take long on a classical computer. The key question
is how the computer time would scale for large problems. Factoring M -digit numbers
on a quantum computer takes no more than O(M3) time (that is, some constant times
M3, using Shor’s algorithm), while the most efficient known method for factoring on

classical computers takes O(e1.9M
1/3(logM)2/3). For large numbers of digits, quantum

computers win (if they can be built). There are a few other problems where classical
computers are known to be much slower than quantum computers: Grover’s algorithm
for searching an unsorted database, Simon’s algorithm, . . .

Here we explore a somewhat artificial problem, solved in the quantum case using the
Deutsch-Josza algorithm.4 This will also introduce the reversibility of quantum com-
puting, and the use of gates – unitary operators that transform Qbits to execute the
quantum computer program.

The Deutsch-Josza algorithm considers functions that map n bits to one bit. Let
us denote the n bits as x0, x1, · · · , xn−1, where x0, x1, · · · , xn−1 are all 0 or 1. Let
x =

∑n−1
m=0 2mxm denote the integer represented by the bit sequence x0, x1, · · · , xn−1;

x0 is the least significant bit and xn−1 is the most significant bit. We’ll also denote
|x0〉|x1〉 · · · |xn−1〉 as |x〉.
Let f be a function that maps the n bits x0, x1, · · · , xn−1 to one bit (that is, either True
or False, one or zero). For example, f could be a function Prime that returns True if
the integer x is prime, or Even that returns True if the integer is divisible by two, or
Big that returns True if the integer is greater than or equal to 2n−1. Our algorithm is

3Developed in collaboration with Bhuvanesh Sundar, based on an exercise by Paul Ginsparg.
4There are many discussions of the Deutsch-Josza algorithm in the literature – feel free to consult them.

If you find one that is particularly pertinent, reference it properly in your writeup.

not concerned with implementing f(x), but with testing properties of an unknown f
by sampling its output. For example, testing whether f is a constant function (either
True for all possible x, or False for all arguments) is a challenge for classical computers.
(An experiment may find a thousand Trues in a row, but to be sure that the function
always returns True one must test all 2n choices of x.) We define a balanced function
to be one which returns True for exactly half of the possible inputs. Thus Even and
Big above are balanced, but Prime is neither balanced nor constant.

(a) Write the four possible functions f(x0) for n = 1 (two possible inputs, two possible
outputs). Which are constant? Which are balanced? For larger n, most possible
functions are neither balanced nor constant.

Deutsch and Josza considered the artificial problem of distinguishing between balanced
and constant functions. Let us define DJ functions to be those functions guaranteed to
be either balanced or constant. Given that f is a DJ function, can a quantum computer
probing f distinguish between the two cases faster than a classical computer? Let us
first consider how a classical computer would solve this.

(b) Argue that in the worst case, the n-bit DJ function f would have to be called 2n−1+1
times in order to determine for certain whether it is balanced or constant.

Our challenge is to use a quantum computer program to do this calculation with one
operation of the operator f . How do we set this up?

A quantum computer performs unitary operations on Qbits to execute the program.
Unitary operations are reversible;5 indeed, the only irreversible step in a perfect quan-
tum computer is the macroscopic observer reading the answer. This means that no
quantum computer can perform the classical AND operation, for example – since
AND(x0, x1) is False for three different values of x0 and x1, it would throw out infor-
mation that could not be retrieved. The workaround is to encode the answer in a final
Qbit y. So if n = 2 and f(x0, x1) = AND(x0, x1) (a function that is neither balanced
nor constant), we could implement f on a quantum computer by writing a program
that took |x0〉|x1〉|y〉 and returned Uf (|x0〉|x1〉|y〉) = |x0〉|x1〉|y ⊕ AND(x0, x1)〉 where
⊕ is addition modulo 2. If you input |x0〉|x1〉|y = 0〉, the output value of |y〉 gives f(x).
If you input |x0〉|x1〉|y = 1〉, the output value of |y〉 gives 1 ⊕ f(x) = NOT (f(x))
– this feature is important to keep Uf reversible. Uf is also linear: for example,
Uf ((α|0〉+ β|1〉)|0〉|y〉) = α|0〉|0〉|y ⊕ f(0, 0)〉+ β|1〉|0〉|y ⊕ f(1, 0)〉.
(c) Show that Uf is reversible for the case where f = AND by giving an explicit method
for reconstructing x0, x1, and y from x0, x1, and y ⊕ AND(x0, x1). Then show in
general that Uf is its own inverse for any n-bit function f .

We are now given a quantum computer operation that evaluates an unknown DJ func-
tion f : Uf (|x0〉|x1〉 · · · |y〉) = |x0〉|x1〉 · · · |y ⊕ f(x)〉).
Just as a classical computer can be made of AND gates, NOT gates, OR gates, etc.,
so a quantum computer is composed of gates that manipulate one or two Qbits by

5The reverse operation is U† = U−1.

application of unitary operators. The single-Qbit gates are thus 2×2 unitary matrices.

(d) In the basis6 |0〉 = (1
0) and |1〉 = (0

1), write the single-Qbit gate NOT as a 2 × 2
matrix. Show that the Hadamard gate, written H = 1/

√
2 (1 1

1 −1), is unitary. We
can implement both the NOT gate and the H gate on electron Qbits, for example, by
exposing them in a magnetic field with a suitable direction and orientation.

Our strategy will be to apply Uf not to a Qbit product that corresponds to a classical
bit sequence |x0〉|x1〉 · · · |xn−1〉, but rather to a Qbit string that represents a quantum
superposition of all possible classical bit sequences. Let us first consider7 the case n = 1.
Our strategy is to use the Hadamard gate to create a superposition of bit sequences
and then apply Uf , and then re-apply the Hadamard gate to find out whether our
function is constant or balanced. We shall abuse notation to use Hn+1|x〉|y〉 to mean
(H|x0〉)(H|x1〉) · · · (H|xn−1〉)(H|y〉).
(e) Starting with the case of n = 1 Qbit plus |y〉, initialize our two Qbits to |Ψ0〉 =
|x0〉|y〉 = |0〉|1〉. Apply the Hadamard operation on both Qbits (exposing them both to
the same magnetic field). What is the resulting superposition? Apply Uf for the four
cases of f you found in part (a), and then apply the Hadamard transformation on both
the Qbits again. What is the measured final value of x0 for the constant functions with
n = 1? For the balanced functions?

You should have found that you could conclusively say if f were constant or balanced
with just one call to Uf .

Now that you have worked out the n = 1 case, let us generalize to arbitrary n. The algo-
rithm proceeds in the same way. We initialize each of the n Qbits |x0〉, |x1〉, · · · , |xn−1〉
to |0〉, and |y〉 to |1〉, so |Ψ0〉 = |0〉n|1〉. We perform the Hadamard operation on
all the Qbits, so |Ψ1〉 = Hn+1|Ψ0〉 = (H|0〉)n(H|1〉). We pass them through Uf , so
|Ψ2〉 = Uf |Ψ1〉. We perform another Hadamard operation on all the Qbits, |Ψ3〉 =
Hn+1|Ψ2〉. Finally, we measure the overlap with the initial state, |〈Ψ0|Ψ3〉|2, measuring
the probability that x0 = 0, x1 = 0, . . . , xn−1 = 0, y = 1.

Let us do this step by step. The initial state of the Qbits is |Ψ0〉 = |0〉n|1〉. A Hadamard
operation is then applied on all of them. The state of the Qbits after this operation is
|Ψ1〉 = Hn+1|Ψ0〉 = (H|0〉)n(H|1〉).
(f) Write |Ψ1〉 as a superposition of |x〉|y〉 for all possible n-bit binary numbers x and
both values of y. Show that the probabilities of being in these states are all equal (but
the amplitudes may have different signs).

Now the Qbits are passed through Uf . The state of the Qbits after passing through Uf
is |Ψ2〉 = Uf |Ψ1〉. When f is a constant function, Uf changes the Qbit y in the same
way for all arguments x.

(g) If f is a constant function, show that |Ψ2〉 is a constant times |Ψ1〉. What is this
constant if f ≡ 0? If f ≡ 1? Show that the measured values of x0, x1, · · · , xn−1 in

6I apologize for the shift in notation: I used the reverse convention in lecture, |1〉 = (1
0) and |0〉 = (0

1).
7The special case n = 1 of the Deutsch-Josza algorithm is called the Deutsch’s algorithm.

|Ψ3〉 after the final Hadamard operation are all 0, so in particular that |〈Ψ0|Ψ3〉|2 = 1.
(Hint: Do not try to apply Hn+1 on |Ψ2〉 written as a superposition of several terms.
Instead, decompose |Ψ2〉 as a product of a state for each Qbit (|Ψ2〉 = Π0≤i<n|φi〉 where
|φi〉 is a superposition of |0〉 and |1〉), and use the fact that H2 = 1).

Hence for a constant function, the result of our quantum computation always has unit
probability of returning the state with all xi = 0 and y = 1.

When f is a balanced function, the value in the Qbit y is changed differently for
different arguments x; for half of those 2n arguments, y is left unchanged, and for half
of those arguments, y is flipped (from 0 to 1 or vice versa). Let us illustrate this with
an example: let us consider the function Even, which returns True if the integer x is
divisible by two.

(h) What is the least significant bit of an integer if it was even? If the integer was odd?
Argue that whether the Qbit y is flipped by Uf or not is determined solely by the least
significant bit x0 in |Ψ1〉. We know that the Qbits were in a product state (a product of
single Qbits) |Ψ1〉 = (H|0〉)n(H|1〉) before passing through Uf . Show that the Qbits are
in a product state after passing through Uf as well (i.e. |Ψ2〉 = Π0≤i<n|φi〉), and write
this product explicitly. Is |Ψ2〉 different from |Ψ1〉? What are the measured values of the
Qbits x0, · · · , xn−1 after the final Hadamard operation? (Hint: Perform the Hadamard
operation on each term in the product above, and use the fact that H2 = 1.)

You should have found that x0, · · · , xn−1 are measured to be something other than
all zeros. The Deutsch-Josza algorithm states that for any balanced function f , the
probability of measuring x0, · · · , xn−1 to be all zeros is 0. We’ll prove this in the
following way.

(i) Show that for an arbitrary balanced function f ,

|Ψ2〉 = Uf |Ψ1〉 =
1

2
n+1
2

∑
0≤x<2n

(−1)f(x)|x〉(|0〉 − |1〉) (2)

=
1

2
n+1
2

 ∑
x:f(x)=0

|x〉 −
∑

x:f(x)=1

|x〉

 (|0〉 − |1〉) .

After the final Hadamard operation, show that the probability of measuring x0 = 0,
x1 = 0, . . . , xn−1 = 0, y = 1 is zero, i.e. 〈Ψ0|(Hn+1|Ψ2〉) = 0. (Hint: Rather than cal-
culating 〈Ψ0|Ψ3〉, calculate the same quantity in the form 〈Ψ1|Ψ2〉 = (〈Ψ0|Hn+1)|Ψ2〉 =
〈Ψ0|(Hn+1|Ψ2〉) = 〈Ψ0|Ψ3〉, and use eqn 2.)

Hence with one application of the function f , with 100% certainty a constant function
returns the initial state and a balanced function with 100% certainty will never return
the initial state.

It is amazing that we could determine whether a DJ function f is constant or balanced
in just one evaluation of Uf . The Deutsch-Josza algorithm achieves an exponential
speedup over its classical counterpart. The problems considered in the above (Deutsch

and Deutsch-Josza) algorithms may seem far removed from applications to real world
problems, but these algorithms paved the way for more complicated and powerful al-
gorithms.

Why are we still factoring 143? The great challenge in building quantum computer
is decoherence, the tendency of Qbits to interact with the environment and go from
quantum superpositions into mixtures.

7.3 Solving Schrödinger: WKB, instantons, and the double well. (Computa-
tion) ©3
We study the problem of quantum tunneling in a symmetric double well potential. If
the barrier between the two wells is large, the ground state and first excited state are
well approximated as symmetric and antisymmetric superpositions of the ground states
in the two separated wells. Indeed, the low-energy physics of the double-well system
can be approximated by a two-level system (TLS), another example of a Qbit. In the
symmetric case, in a basis where (1

0) is the state localized in the left well and and (0
1)

is in the right well, the Hamiltonian is

HTLS =

(
0 −∆
−∆ 0

)
, (3)

where ∆ is called the tunneling matrix element.

(a) What is the energy splitting for HTLS? Calculate the time evolution operator U(t) =
exp(−iHTLSt/~). If we start in the left well at t = 0, what is the probability being in
the left well after time t?

It is traditional and useful to study the double well given by the quartic polynomial

V (y) = V0

(
y

Q0

− 1

)2(
y

Q0

+ 1

)2

. (4)

In our notation, this potential has minima at ±Q0 separated by a barrier of height V0;
a particle of mass m has small oscillation frequency ω near the minima in each of the
two wells.

(b) Calculate the barrier height V0 algebraically in terms of m, Q0, and ω, that sets the
small oscillation frequency near y = Q0 equal to ω.

(c) Calculate the classical instanton action (or, equivalently, the WKB exponent) S0 =∫ Q0

−Q0

√
2mV (y)dy for our potential. Let Q0 = na0 with a0 =

√
~/2mω the width of

the ground state in the harmonic approximation. What is S0/~ in terms of n? What
numerical value does it have for n = 5? How big is exp(−S0/~), the Euclidean action’s
suppression to the contribution of the instanton path? (Hint: S0/~ is dimensionless.
As suggested by the latter part of the exercise, for our potential it should depend only
on the dimensionless number n, given that V0 is given as in part (b).)

We shall assume our particle has the mass of a hydrogen atom, the small oscillation
frequency in the left and right wells is 1THz, and Q0 = 5a0. Generate a grid of length
L = 20a0 with Np = 200 points. Let the initial wavefunction ψ[0] = ψ0(x+Q0) be the
harmonic ground state in the left well. As in the coherent-state exercise, generate the
appropriate arrays Upot(dt/2) and Ukin(dt) to evolve ψ using your BCH formula, with
dt = P/20 where P is the period of the oscillator.

(d) Solve for the time evolution over 1000 periods. Animate the probability density
|ψ(x, t)|2 versus time. Does it travel between the two wells periodically, as should be
predicted by your answer to part (a)?

(e) Plot the probability
∫ 0

−∞ |ψ(x, t)|2 that the particle is found in the left well. (The
high-frequency wiggles are due to the small components of higher eigenstates of our
initial state in the left well.) By eye, estimate the period of oscillation, and also ∆,
within 10%.8

(f) Use a nonlinear least-squares method to fit your prediction from part (a) to the
probability you calculated in part (e). Include your fit in the plot for part (e). What
is ∆Fit? (If your answer from part (e) is off by much more than 30%, see if you can
track down the problem.) What is the ratio of your estimated energy splitting (using
the formula from part (a)), to the energy splitting between states in one of the two wells
(in the harmonic approximation)? Quantum tunneling is one of the most important
sources of low-energy, long-time behavior in physics.

The instanton formula for the tunnel splitting is closely related to the WKB formula.9

Both are of the form ∆ = ~ω0 exp(−S0/~). In the WKB formula, the prefactor ~ω0 is
given by a matching calculation; in the instanton method it is given by a path integral
incorporating small oscillations about the instanton path.10 Gildener and Patrascioiu
(Phys. Rev. D 16, 423, 1977, referred to by Coleman) did the calculation explicitly for
the quartic well using instanton methods, and got

∆ ∼ ~ω
√

6S0

π~
exp(−S0/~) (5)

so in our notation ω0/ω =
√

6S0/π~.

(g) Calculate your numerical estimate of ω0/ω, and compare with Gildener and Pa-
trascioiu’s estimate.

There is an interesting story about communication between high-energy and con-
densed-matter physics. Sidney Coleman (high-energy Harvard theorist) and Jim Langer
(condensed-matter theorist on sabbatical at Harvard) were both working on barrier

8Nonlinear least-squares routines typically get lost if you don’t start near the best fit.
9The two turning points for the classical path in the harmonic well are not far enough apart for the

traditional WKB formula to be accurate; a suitable generalization accounting for that proximity does agree
with the instanton formula.

10Coleman tells us the answer from the instanton calculation is given in terms of ‘Wronskians’.

crossing at the same time. Coleman was stuck for months, because his instanton calcu-
lation was a factor of two higher than the WKB estimate (the ’double well done doubly
well’ appendix to his Les Houches lectures, calculating quantum fluctuations causing
transitions through barriers). Unbeknownst to him, Jim Langer in a nearby office had
solved the problem in the statistical mechanics context (critical droplet theory, cal-
culating thermal fluctuations causing transitions over barriers). Eventually, Coleman
realized as Langer had earlier that only half the fluctuations that reach the barrier
actually cross it.

