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Potentially useful reading
Landau & Lifshitz Quantum Mechanics, ch. 12 (Group representations)

Sakurai and Napolitano, sections 7.1-7.2 (identical particles)
Schumacher & Westmoreland 14.3 (identical particles)

Weinberg section 4.5 (bosons & fermions)
Arfkin, Weber, and Harris, Mathematical Methods for Physicists, chapter 17 (Group

representations)
Sethna [ignore temperature] sections 7.3 (bosons and fermions), 7.4 (non-interacting).

9.1 Light Proton Superfluid. (Dimensional Analysis) ©3
In this exercise, we yet again examine a parallel world where the proton and neutron
masses are equal to the electron mass, instead of ∼2000 times larger.

Fig. 1 Atoms with imaginary box of size equal to average space per atom

Atoms Bose condense when the number density n is high and the temperature T is
low. One can view this condensation point as where temperature and the confinement
energy become competitive. Up to a constant of order one, the thermal energy at the
transition temperature kBTc equals the confinement energy needed to put a helium
atom in a box with impenetrable walls of length the mean nearest-neighbor spacing
L = n−1/3.

Calculate the ratio of the confinement energy EHe,ours of Helium in our world and water
EH2O,light in the parallel world. Helium goes superfluid at ∼2◦K in our universe. From
that, estimate the superfluid transition temperature Tc for water in the parallel universe.
Will it be superfluid at room temperature? (Assume the box sizes for He in our
world and water in the parallel world are the same.1 Room temperature is about

1The number of molecules of water per unit volume is comparable to the number of atoms of liquid helium
per unit volume in the real world, and the water molecule will stay about the same size in the parallel world.



300◦K. Helium 4, the isotope that goes superfluid, has two neutrons and two protons,
with roughly equal masses. Oxygen 16 has eight protons, eight neutrons, and eight
electrons.)

9.2 Rotating Fermions. (Group theory) ©3
In this exercise, we’ll explore the geometry of the space of rotations.

Spin 1/2 fermions transform upon rotations under SU(2), the unitary 2×2 matrices
with determinant one. Vectors transform under SO(3), the ordinary 3 × 3 rotation
matrices you know of.

Sakurai argues that a general SU(2) matrix U =
(

a b
−b∗ a∗

)
with |a|2 + |b|2 = 1. Viewing

{Re(a), Im(a),Re(b), Im(b)} as a vector in four dimensions, SU(2) then geometrically
is the unit sphere S3 in R4.

Remember that for every matrix R in SO(3), there are two unitary matrices U and −U
corresponding to the same physical rotation. The matrix −U has coordinates (−a,−b)
– it is the antipodal point on S3, exactly on the opposite side of the sphere. So SO(3)
is geometrically the unit sphere with antipodal points identified. This is called (for
obscure reasons) the projective plane, RP 3.

Feynman’s plate (in Feynman’s plate trick) as it rotates 360◦ travels in rotation space
from one orientation to its antipode. While I’m not sure anyone has figured out whether
arms, shoulders, and elbows duplicate the properties of fermions under rotations, the
plate motion illustrates the possibility of a minus sign.

But we can calculate this trajectory rather neatly by mapping the rotations not to the
unit sphere, but to the space R3 of three-dimensional vectors. (Just as the 2-sphere
S2 can be projected onto the plane, with the north pole going to infinity, so can the
3-sphere S3 be projected onto R3.) Remember the axis-angle variables, where a rotation
of angle φ about an axis n̂ is given by

exp(−iS · n̂φ/~) = exp(−iσ · n̂φ/2) = exp(−iJ · n̂φ/~) (1)

where the middle formula works for SU(2) (where S = ~σ/2, because the particles
have spin 1/2) and the last formula is appropriate for SO(3).2 We figure n will be the
direction of the vector in R3 corresponding to the rotation, but how will the length
depend on φ? Since all rotations by 360◦ are the same, it makes sense to make the
length of the vector go to infinity as φ→ 360◦. We thus define the Modified Rodrigues
coordinates for a rotation to be the vector p = n̂ tan(φ/4).

(a) Fermions, when rotated by 360◦, develop a phase change of exp(iπ) = −1 (as dis-
cussed in Sakurai & Napolitano p. 165, and as we illustrated with Feynman’s plate

2The factor of two is there for SU(2) because the spin is 1/2. For SO(3), infinitesimal generators are

antisymmetric matrices, so S
(i)
jk = J

(i)
jk = i~εijk in the xyz basis; in the usual quantum basis mz = (−1, 0, 1)

the formula will be different.



trick). Give the trajectory of the modified Rodrigues coordinate for the fermion’s ro-
tation as the plate is rotated 720◦ about the axis n̂ = ẑ. (We want the continuous
trajectory on the sphere S3, perhaps which passes through the point at ∞. Hint: The
trajectory is already defined by the modified Rodrigues coordinate: just describe it.)

(b) For a general Rodrigues point p parameterizing a rotation in SO(3), what antipodal
point p′ corresponds to the same rotation? (Hint: A rotation by φ and a rotation by
φ+ 2π should be identified.)

9.3 Matrices, wavefunctions, and group representations. (Group reps) ©3
In this exercise, we shall explore the tensor product of two vector spaces, and how they
transform under rotations. We’ll draw analogies between two examples: vectors →
matrices and single-particle-states → two-particle-wavefunctions.

The tensor product between two vectors is (v ⊗ w)ij = viwj. The tensor product
between two single-particle wavefunctions ζ(x) for particle A and φ(y) for particle B is
the product wavefunction Ψ(x, y) = ζ(x)φ(y). If H(A) and H(B) are the Hilbert spaces
for particles A and B, the tensor product space H(AB) = H(A)⊗H(B) is the space of all
linear combinations of tensor products Ψ(x, y) = ζ(x)φ(y) of states in H(A) and H(B).
Two-particle wavefunctions live in H(AB).

Let {êi} = {ê1, ê2, ê3} be an orthonormal basis for R3, and let {ζα} and {φβ} be
orthonormal bases for the Hilbert spaces H(A) and H(B) for particles A and B.

(a) Show that the tensor products Ψαβ(x, y) = ζα(x)φβ(y) are orthonormal. (The dot
product is the usual

∫
dxdyΨ∗Ψ.) With some more work, it is possible to show that

they are also complete, forming an orthonormal basis of H(AB).)

Suppose the two particles are both in states with total angular momentum LA = LB =
1, and are then coupled with a small interaction. Angular momentum addition rules
then say that the two-particle state can have angular momentum L(AB) equal to 2 or 1
or 0: 1⊗ 1 = 2⊕ 1⊕ 0. In group representation theory, this decomposition corresponds
to finding three subspaces that are invariant under rotations.

The tensor product space R3 ⊗ R3 are normally written as 3×3 matrices Mij, where
M =

∑3
i=1

∑3
j=1Mij êiêj. Vectors transform under L = 1, so we would expect matrices

to decompose into L = 2, 1, and 0.

(b) Show that the antisymmetric matrices, the multiples of the identity matrix, and the
traceless symmetric matrices are all invariant under rotation (i.e., R−1MR is in the
same subspace as M for any rotation R). Which subspace corresponds to which angular
momentum?

(c) Consider the L = 1 subspace of matrices M . Using the totally antisymmetric tensor
εijk, map this subspace into vectors3 in R3. Are these vectors or pseudovectors?

3It’s important that the mapping behaves properly as the coordinates rotate. Because the tensor εijk
is rotation invariant (like δij), any contraction of vectors or tensors with it will transform properly under
rotations. That’s why dot products v · w =

∑
δijviwj and cross products (v × w)i =

∑
εijkvjwk are so

common in physics – they transform correctly under rotations.



I always found torque τ = r×F quite mysterious. (Its direction depends on whether you
are right- or left-handed!) If you calculate the torque as the antisymmetric 3×3 matrix
Mij = riFj − rjFi then this mystery disappears. It is convenient to turn antisymmetric
3×3 matrices into pseudovectors (especially for those who haven’t had much math yet),
but it can be physically somewhat confusing.

Thus the angular momentum addition rules for particles with angular momentum equal
to one correspond nicely to the ways in which matrices and tensors can be decomposed
into rotation-invariant subspaces.

Now suppose our two L = 1 particles are identical, with spins aligned.

(d) Which total orbital angular momentum states are allowed for spin-aligned fermions?
For spinless bosons?

Many physical properties are described by symmetric matrices: the dielectric constant
in electromagnetism, the stress and strain tensors in elastic theory, and so on.

9.4 Crystal field theory: d-orbitals. (Group reps) ©3
The vector space of functions f(x, y, z) on the unit sphere transforms into itself un-
der rotations f(x) →R f(R−1x). These transformations are linear (af(x) + g(x) →R

af(R−1x) + g(R−1x)), and obey the group composition rule, and thus form a represen-
tation of the rotation group.

(a) Argue that the homogeneous polynomials of degree `,

f(x, y, z) =
∑̀
m=0

`−m∑
n=0

f`mnx
mynz`−m−n (2)

form a subspace that is invariant under rotations. (Hint: The three components of
a rotation of {x, y, z} are linear combinations of x, y, and z. Use the distributive
property.)

Thus the irreducible representations are contained in these invariant subspaces. Sakurai
indeed mentions in his section 3.11 on tensor operators that Y 0

1 =
√

3/4πz/r and

Y ±11 = ∓
√

3/2π(x ± iy)/r, and also gives a formula for Y ±22 ; since r = 1 on our unit
sphere these are homogeneous polynomials of degree one.

(b) Look up the ` = 2 spherical harmonics (e.g. in Sakurai’s appendix B) and write
them as quadratic polynomials in x, y, and z.

The ` = 2 spherical harmonics are the angular parts of the wavefunctions for electrons
in d orbitals (e.g. of transition metal atoms).4 Electrons in d-orbitals are much more

4Here we use the common independent-electron language, where the complex many-body wavefunction
of an atom, molecule, or solid is viewed as filling single-electron states, even though the electron-electron
repulsion is almost as strong as the electron-nuclear attraction. This idea can be dignified in three rather
different ways. First, one can view each electron as feeling an effective potential given by the nucleus plus the
average density of electrons. This leads to mean-field Hartree-Fock theory. Second, one can show that the



tightly contained near the nucleus than p and s orbitals of similar energy.5 In molecules
and solids, the s and p orbitals usually hybridize (superimpose) into chemical bonds and
broad electron bands, where the original orbitals are strongly distorted. In contrast,
d-electrons rarely participate in chemical bonds, and their electron bands are narrow
– almost undistorted orbitals with small hopping rates. The energy levels of the five
d-orbitals are, however, shifted from one another by their environments. (For crystals,
these shifts are called crystal field splittings.)

We can use group representation theory to understand how the d-orbitals are affected
by their molecular or crystalline environment.

First, we need to calculate the character χ(R) = χ(n̂, φ) of the ` = 2 representation.
Remember that the character is the trace of the (here 5× 5) matrix corresponding to
the rotation. Remember that this trace depends only on the conjugacy class of R –
that is, if S is some other group element then χ(S−1RS) = χ(R). Remember that any
two rotations by the same angle φ are conjugate to one another.6

In class, we found that the character of the ` = 1 representation by using the Cartesian

x, y, z basis, where Rẑ(φ) =

(
cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

)
. Hence χ(1)(φ) = 1 + 2 cos(φ). We can do

this same calculation in the mz basis of the spherical harmonics, where Y 0
1 is unchanged

under rotations and Y ±11 → exp(±iφ)Y ±11 . Here

D(1)
ẑ (φ) =

(
exp(iφ) 0 0

0 1 0
0 0 exp(−iφ)

)
, (3)

and again χ(1)(φ) = 1 + 2 cos(φ).

(c) Calculate D(2)
ẑ (φ), the transformation matrix for the L = 2 spherical harmonics

under a rotation by φ about the z axis, in analogy with eqn 3. Calculate the character
χ(2)(φ) of the L = 2 representation. Give the characters for rotations Cn by 2π/n, for
n = 1, 2, 3, and 4 (the important rotations for crystalline symmetry groups.) (Hints:
Cn is an n-fold axis of rotation, a rotation by 2π/n.)

The most common symmetry groups for d-electron atoms in crystals is O, the octa-
hedral group (the symmetry group of a cube). Here let us run through a tangible
calculation, to learn how to use character tables to decompose representations. Look

ground state energy can be written as an unknown functional of the electron density (the Hohenberg-Kohn
theorem, and then calculate the kinetic energy terms as an effective single-body Schrödinger equation in the
resulting effective potential due to the net electron density (the Kohn-Sham equations). Third, one can start
with independent electrons (or Hartree-Fock electrons) and slowly ‘turn on’ the electron-electron repulsion.
The independent-electron excited eigenstates develop lifetimes and become resonances. For atoms these
lifetimes represent Auger decay rates. For crystals these resonances are called quasiparticles and the theory
is called Landau Fermi liquid theory. Landau Fermi-liquid theory is usually derived using Greens functions
and Feynman diagrams, but it has recently been re-cast as a renormalization-group flow.

5The d-orbitals have angular nodes in the wavefunction; the s and p orbitals of similar energy will have
radial nodes in their wavefunctions that push the probability farther from the nucleus.

6If the two rotations have axes n̂ and n̂′, choose S to rotate n̂′ into n̂.



up the character tables for the irreducible representations of the finite group O. (To
simplify the calculation, we’ll assume that inversion symmetry is broken; otherwise we
should use Oh, which has twice the number of group elements.)

(d) Find a character table for the octahedral group O. It should have labels for the
columns E, 8C3, 3C2, 6C2, and 6C4. The multipliers tell you how many group elements
are in each conjugacy class. Describe in words what symmetry of the cube corresponds
to each column. Why are there two different columns for two-fold rotations? (Hint:
Two rotations that are conjugate in SO(3) need not be conjugate when restricted to O.
Usually symmetries that are ‘physically different’ are in different conjugacy classes.)

As an example, we might imagine that p-electron orbitals will stay degenerate under a
cubic perturbation.

(e) Verify that the characters, 1 + 2 cos(φ) for the L = 1 representation in these five
columns E → 3, 8C3 → 0, 3C2 → −1, 6C2 → −1, and 6C4 → 1 are identical to
one of the rows. Which three-dimensional irreducible representation of O is it? (This
means that the p-electron orbitals do indeed stay an irreducible representation when
the spherical symmetry is broken down to cubic, and hence will stay degenerate.) Check
that our character is indeed orthogonal to the other rows in the table. Check that the
‘dot product’ of our character with the identical row is indeed the number of elements
in the octahedral group, o(O) = 24.

(f) Use the orthogonality relations of the characters of irreducible representations for
O, decompose the ` = 2 representation from part (c) into irreducible representations
of the octahedral group. How will the energies of the single-particle d-orbitals of a
transition metal atom split in an octahedral environment? What will the degeneracies
and symmetries (A1, A2, E, . . . ) be of the different levels? (Hints: (1) Cn is an
n-fold axis of rotation, a rotation by 2π/n. (2) When you take the dot product of your
character from part (c) with the row, make sure you multiply by the number of elements
in the conjugacy class. If you are doing it right, the dot product of the characters
should equal a multiple of the number of octahedral group elements o(O) = 24, and
the dimensions of the sub-representations should add up to five.)

This may seem like magic. Let’s pull it down to earth, by identifying which d orbitals are
in which of the irreducible representations. Your answer to part (d) should have involved
one two-dimensional irreducible representation and one three-dimensional one. The
five d-orbitals are often denoted dxy, dxz, dyz, dz2 and dx2−y2 . (This is a bit of a cheat;
really dz2 should be written d2z2−x2−y2 or something like that.) This particular basis
is nice, because the cubic rotations acting in this basis are block-diagonal. Translated
into group representation lingo, this means three of these elements form an invariant
subspace, and the other two form another invariant subspace.

(g) Figure out which of these orbitals are in each of the two representations you found
in part (d). (Hint: Check how these five orbitals transform under the octahedral
symmetries that permute x, y, and z among themselves.)



9.5 Quantum dice.7 (Quantum) ©2
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Fig. 2 Quantum dice. Rolling two dice. In Bosons, one accepts only the rolls in the shaded
squares, with equal probability 1/6. In Fermions, one accepts only the rolls in the darkly-
shaded squares (not including the diagonal from lower left to upper right), with probability
1/3.

You are given several unusual ‘three-sided’ dice which, when rolled, show either one,
two, or three spots. There are three games played with these dice: Distinguishable,
Bosons, and Fermions. In each turn in these games, the player rolls one die at a time,
starting over if required by the rules, until a legal combination occurs. In Distinguish-
able, all rolls are legal. In Bosons, a roll is legal only if the new number is larger or
equal to the preceding number. In Fermions, a roll is legal only if the new number is
strictly larger than the preceding number. See Fig. 2 for a table of possibilities after
rolling two dice.

Our dice rules are the same ones that govern the quantum statistics of identical parti-
cles.

(a) Presume the dice are fair: each of the three numbers of dots shows up 1/3 of the
time. For a legal turn rolling a die twice in Bosons, what is the probability ρ(4) of
rolling a 4? Similarly, among the legal Fermion turns rolling two dice, what is the
probability ρ(4)?

(b) For a legal turn rolling three ‘three-sided’ dice in Fermions, what is the probability
ρ(6) of rolling a 6? (Hint: There is a Fermi exclusion principle: when playing
Fermions, no two dice can have the same number of dots showing.) Electrons are
fermions; no two electrons can be in exactly the same state.

When rolling two dice in Bosons, there are six different legal turns (11), (12), (13), . . . ,
(33); half of them are doubles (both numbers equal), while for plain old Distinguishable
turns only one-third would be doubles8; the probability of getting doubles is enhanced

7This exercise was developed in collaboration with Sarah Shandera.
8For Fermions, of course, there are no doubles.



by 1.5 times in two-roll Bosons. When rolling three dice in Bosons, there are ten
different legal turns (111), (112), (113), . . . , (333). When rolling M dice each with N
sides in Bosons, one can show that there are(

N +M − 1

M

)
=

(N +M − 1)!

M ! (N − 1)!

legal turns.

(c) In a turn of three rolls, what is the factor by which the probability of getting triples
in Bosons is enhanced over that in Distinguishable? In a turn of M rolls, what is the
enhancement factor for generating an M-tuple (all rolls having the same number of dots
showing)?

Notice that the states of the dice tend to cluster together in Bosons. Examples of
real bosons clustering into the same state include Bose condensation and lasers (future
exercies).

9.6 Three particles in a box. (Quantum) ©3
(Adapted from Sakurai, p. 4.1)

Consider free, noninteracting particles of mass m in a one-dimensional box of length L
with infinitely high walls.

(a) What are the lowest three energies of the single-particle energy eigenstates?

If the particles are assumed non-interacting, the quantum eigenstates can be written
as suitably symmetrized or antisymmetrized single-particle eigenstates. One can use a
level diagram, such as in Fig. 3, to denote the fillings of the single particle states for
each many-electron eigenstate.

Bosons

Fermions

Distinguished

Fig. 3 Level diagram, showing one of the ground states for each of the three cases.



(b) If three distinguishable spin-1/2 particles of the same mass are added to the box,
what is the energy of the three-particle ground state? What is the degeneracy of the
ground state? What is the first three-particle energy eigenvalue above the ground state?
Its degeneracy? The degeneracy and energy of the second excited state? Draw a level
diagram for one of the first excited states, and one of the second excited states (the
ground state being shown on the left in Fig. 3).

(c) The same as part (b), but for three identical spin-1/2 fermions.

(d) The same as part (b), but for three identical spin-zero bosons.


