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Potentially useful reading
Sakurai and Napolitano, sections 7.1-7.2 (identical particles)

Schumacher & Westmoreland 14.3 (identical particles)
Weinberg section 4.5 (bosons & fermions)

Group Theory, by D. D. Vvedensky,
http://www.cmth.ph.ic.ac.uk/people/d.vvedensky/groups/Chapter8.pdf

Sethna [ignore temperature] sections 7.3 (bosons and fermions), 7.4 (non-interacting), 7.5
(Maxwell-Boltzmann), 7.6 (free particles, black body, Bose condensation), 7.7 (Fermi gas).

10.1 Bosons are gregarious: superfluids and lasers. (Quantum, Optics, Atomic
physics) ©3
Adding a particle to a Bose condensate. Suppose we have a non-interacting system of
bosonic atoms in a box with single-particle orthonormal eigenstates ψn. Suppose the
system begins with all N bosons in a state ψ0 (a “Bose condensed state”), so

Ψ
[0]
N (r1, . . . , rN) = ψ0(r1) · · ·ψ0(rN). (1)

Suppose a new particle is gently injected into the system, into an equal superposition
of the M lowest single-particle states.1 That is, if it were injected into an empty box,
it would start in state

φ(rN+1) =
1√
M

(
ψ0(rN+1) + ψ1(rN+1)

+ . . .+ ψM−1(rN+1)
)
. (2)

The state Φ(r1, . . . rN+1) after the particle is inserted into the non-interacting Bose

condensate is given by symmetrizing the product function Ψ
[0]
N (r1, . . . , rN)φ(rN+1)

Ψsym(r1, r2, . . . , rN+1) = (normalization)
∑
P

Ψ
[0]
N (rP1 , rP2 , . . . , rPN

)φ(rPN+1
). (3)

1For free particles in a cubical box of volume V , injecting a particle at the origin φ(r) = δ(r) would
be a superposition of all plane-wave states of equal weight, δ(r) = (1/V )

∑
k eik·x. (In second-quantized

notation, a†(x = 0) = (1/V )
∑

k a
†
k.) We ‘gently’ add a particle at the origin by restricting this sum to

low-energy states. This is how quantum tunneling into condensed states (say, in Josephson junctions or
scanning tunneling microscopes) is usually modeled.



So, for example, if M = 2 and N = 1,

Ψsym(r1, r2) = S[ψ0(r1)(ψ0(r2) + ψ1(r2))/
√

2]

= (normalization)[ψ0(r1)(ψ0(r2) + ψ1(r2)) + ψ0(r2)(ψ0(r1) + ψ1(r1))] (4)

= (normalization)[2ψ0(r1)ψ0(r2) + ψ0(r1)ψ1(r2) + ψ0(r2)ψ1(r1)].

Since the ψn are orthonormal, the integral of the term in brackets squared is 22+12+12 =
6, so the normalization is 1/

√
6. The probability of the new particle entering state

n = 0, 4/6, is twice the net probability 2/6 of the new particle entering state n = 1.

(a) Calculate the symmetrized initial state of the system with the injected particle for
general M and N . Show that the ratio of the probability that the new boson enters the
ground state ψ0 is enhanced over that of its entering a particular empty state2 (ψm for
0 < m < M) by a factor N + 1.

So, if a macroscopic number of bosons are in one single-particle eigenstate, a new parti-
cle will be much more likely to add itself to this state than to any of the microscopically
populated states.

Notice that nothing in your analysis depended on ψ0 being the lowest energy state.
If we started with a macroscopic number of particles in a single-particle state with
wavevector k (that is, a superfluid with a supercurrent in direction k), new added
particles, or particles scattered by inhomogeneities, will preferentially enter into that
state. This is an alternative approach to understanding the persistence of supercurrents,
complementary to the topological approach (Exercise 2).

Adding a photon to a laser beam. This ‘chummy’ behavior between bosons is also the
principle behind lasers.3 A laser has N photons in a particular mode. An atom in an
excited state emits a photon. The photon it emits will prefer to join the laser beam than
to go off into one of its other available modes by a factor N + 1. Here the N represents
stimulated emission, where the existing electromagnetic field pulls out the energy from
the excited atom, and the +1 represents spontaneous emission which occurs even in
the absence of existing photons.

Imagine a single atom in a state with excitation energy energy E and decay rate Γ,
in a cubical box of volume V with periodic boundary conditions for the photons. By
the energy-time uncertainty principle, 〈∆E∆t〉 ≥ ~/2, the energy of the atom will
be uncertain by an amount ∆E ∝ ~Γ. Assume for simplicity that, in a cubical box
without pre-existing photons, the atom would decay at an equal rate into any mode in
the range E − ~Γ/2 < ~ω < E + ~Γ/2.

(b) Assuming a large box and a small decay rate Γ, find a formula for the number of
modes M per unit volume V per unit energy E in the box (the density of states). How

2More precisely, calculate the ratio of the probability of being in the many-body ground state (all particles
in state ψ0) to the probability of injecting into the many-body state with one boson in the state ψm and the
rest in ψ0.

3Laser is an acronym for ‘light amplification by the stimulated emission of radiation’.



many states are competing for the photon emitted from our atom, for a laser with wave-
length λ = 619 nm and line-width Γ = 104 rad/s. (Hint: The eigenstates are plane
waves, with two polarizations per wavevector. Using periodic boundary conditions, one
can derive the density of states. This is a standard calculation, so you can look up the
answer to check it.)

Assume the laser is already in operation, so there are N photons in the volume V of
the lasing material, all in one plane-wave state (a single-mode laser).

(c) Using your result from part (a), give a formula for the number of photons per unit
volume N/V there must be in the lasing mode for the atom to have 50% likelihood of
emitting into that mode.

The main task in setting up a laser is providing a population of excited atoms. Amplifi-
cation can occur if there is a population inversion, where the number of excited atoms is
larger than the number of atoms in the lower energy state (definitely a non-equilibrium
condition). This is made possible by pumping atoms into the excited state by using
one or two other single-particle eigenstates.

10.2 Superfluid order and vortices. (Quantum, Condensed matter) ©3

Fig. 1 Superfluid vortex line. Velocity flow v(x) around a superfluid vortex line.

Superfluidity in helium is closely related to Bose condensation of an ideal gas; the
strong interactions between the helium atoms quantitatively change things, but many
properties are shared. In particular, we describe the superfluid in terms of a complex
number ψ(r), which we think of as a wavefunction which is occupied by a large fraction
of all the atoms in the fluid.

(a) If N non-interacting bosons all reside in the same single-particle state with wave-
function ζ(r), write an expression for the net current density J(r).4 Write the complex
field ζ(r) in terms of an amplitude and a phase, ζ(r) = |ζ(r)| exp(iφ(r)). We write the

4You can use the standard quantum mechanics single-particle expression J = (i~/2m)(ζ∇ζ∗ −
ζ∗∇ζ) and multiply by the number of particles, or you can use the many-particle formula J(r) =
(i~/2m)

∫
d3r1 · · · d3rN

∑
` δ(r` − r)(Ψ∇`Ψ∗ − Ψ∗∇`Ψ) and substitute in the condensate wavefunction

Ψ(r1, . . . , rN ) =
∏
n ζ(rn).



superfluid density as ns = N |ζ|2. Give the current J in terms of φ and ns. What is
the resulting superfluid velocity, v = J/ns? (It should be independent of ns.)

The Landau order parameter in superfluids ψ(r) is traditionally normalized so that the
amplitude is the square root of the superfluid density; in part (a), ψ(r) =

√
Nζ(r).

In equilibrium statistical mechanics, the macroscopically occupied state is always the
ground state, which is real and hence has no current. We can form non-equilibrium
states, however, which macroscopically occupy other quantum states. For example, an
experimentalist might cool a container filled with helium while it is moving; the ground
state in the moving reference frame has a current in the unmoving laboratory frame.
More commonly, the helium is prepared in a rotating state.

(b) Consider a torus filled with an ideal Bose gas at T = 0 with the hole along the
vertical axis; the superfluid is condensed into a state which is rotating around the hole.
Using your formula from part (a) and the fact that φ+ 2nπ is indistinguishable from φ
for any integer n, show that the circulation

∮
v · dr around the hole is quantized. What

is the quantum of circulation?

Superfluid helium cannot swirl except in quantized units! Notice that you have now
explained why superfluids have no viscosity. The velocity around the torus is quantized,
and hence it cannot decay continuously to zero; if it starts swirling with non-zero n
around the torus, it must swirl forever.5 This is why we call them superfluids.

In bulk helium this winding number labels line defects called vortex lines.

10.3 Fourier series and group representations. (Math) ©3
In class, we focused on finite-dimensional group representations for finite groups. In
quantum mechanics, the most useful symmetries are often continuous, and Hilbert
space is infinite dimensional. With some small modifications, all of our results can go
through to the continuous case.

Here we apply group representation theory to the continuous rotations in the plane,
SO(2). Let gφ ∈ SO(2) be the rotation by angle φ.6

(a) Show that every different gφ is in its own conjugacy class. (This is true for any
commutative group.)

Thus we may label the conjugacy classes by the angle φ.

Consider the action of gφ on a function f(θ):

R(gφ) : f(θ)→ f(θ − φ). (5)

5Or at least until a dramatic event occurs which changes n, like a vortex line passing across the torus,
demanding an activation energy proportional to the width of the torus. See also Exercise (7.9) in my book.

6This exercise is mostly about understanding the definitions. If you find resources on the Web or elsewhere
that are helpful, just properly acknowledge them. In particular, I found http://www.cmth.ph.ic.ac.uk/people/
d.vvedensky/groups/Chapter8.pdf which discusses the application of group reps to SO(2). No guarantees
that my conventions agree with those in the literature, though.



Here θ represents a point on a circle, the complex function f(θ) is a vector in the
Hilbert space of complex functions7 on the circle, and R(gφ) is a linear mapping of that
function space into itself.8

(b) Show that, for any non-negative integer m, that the two-dimensional space spanned
by the basis {cos(mθ), sin(mθ)} is an invariant subspace under SO(2). Give the explicit
2×2 matrix for R(gφ) acting on this subspace in this basis. What is the character χ(φ)
of this representation? (Hint: Use the angle addition formulas. Check that the
character of the identity is the dimension of the representation.)

In the space of complex functions on the circle, this two-dimensional representation is
not irreducible. It can be decomposed into two invariant subspaces, with bases {eimθ}
and {e−imθ}.
(c) What is the character of the ‘m’-representation given by the one-dimensional in-
variant subspace of multiples of {eimθ}?
Thus the ‘character table’ for SO(2) would have an infinite number of rows (one for
each integer ±m) and a continuous infinity of columns (one for each angle φ).

For finite groups, we decomposed representations into irreducible pieces using the ‘little’
orthogonality theorem: for any two irreducible representations α and β, the sum over
group elements

∑
g∈G χ

(α)(g)χ(β)(g)∗ = o(G)δαβ, where o(G) is the number of elements
of the group. For continuous groups, the sum must be replaced by an integral over the
group,9 and the number of elements of the group replaced by the ‘volume’ of the group.
For two-dimensional rotations, we find∫ 2π

0

dφχ(α)(φ)χ(β)(φ)∗ = 2πδαβ. (6)

(d) Show that the characters of your irreducible representations from part (c) satisfy the
orthogonality relation 6. Is the character of your reducible representation in part (b)
orthogonal to all the irreducible representations? Use the little orthogonality relation
explicitly to decompose this reducible representation into its irreducible components.

For finite-dimensional representations of finite groups, we knew that any representation
could be decomposed into irreducible representations: that is, any general vector could
be written as a sum of vectors in the different invariant subspaces. For example, in
Alemi’s analysis of vibrations in a triangular molecule, he found the normal modes by
using a projection operator

P (α) = (f (α)/o(G))
∑
g∈G

χ(α)(g)∗R(g). (7)

7Particularly, L2 functions on the circle.
8In the past, we viewed group representations as mappings of the group into spaces of matrices that

preserve multiplication. But matrices are just linear transformations of vectors; here we are using infinite
dimensional vectors instead. Thus R(g) is a linear map taking a function to another function.

9For SO(2), this is just an integral over φ. More generally, and in particular for SO(3), you have an extra
factor in the integral (the Haar measure).



Here10 f (α) is the dimension of the representation α.

For example, any random deformation of the molecule, when averaged over the group,
gave a uniform dialation of the triangle. This dialation is invariant under triangular
symmetries – so it transforms under the representation A1. Since χ(A1)(g) ≡ 1, this
is just what eqn (7) suggests. When Alex multiplied by the characters of the two-
dimensional representation E (using P (E) in eqn 7), though, he discovered a different
normal mode that was doubly degenerate.

Let us return now to our infinite-dimensional space of complex functions on the circle, to
connect our irreducible representation decomposition with the theory of Fourier series.
For our continuous group SO(2), the corresponding projection operator is

P (α) = (1/2π)

∫ 2π

0

dφχ(α)(φ)∗R(gφ). (8)

Let f(θ) be a particular complex function on the circle. Let R(gφ) be defined on the
function as in eqn (5).

(e) Show that the projection operator in eqn (8), using the ‘m’ representation of part (c),
takes f(θ) into a coefficient times the basis vector for that representation. How is the
coefficient related to the Fourier series coefficient11 f̃m for f?

If we sum the projections of a vector into all the invariant subspaces, we should get the
vector back again.

(f) Write the sum of the projections of f(θ) over all the irreducible representations of
SO(2). Do you recognize this formula? Is it equal to the function f(θ)?

This is the underlying mathematical reason why one can expand periodic functions in
Fourier series.

10.4 Anyons. (Statistics) ©3

Frank Wilczek, “Quantum mechanics of fractional-spin particles”, Phys. Rev. Lett.
49, 957 (1982).

Steven Kivelson, Dung-Hai Lee, and Shou-Cheng Zhang, “Electrons in Flatland”,
Scientific American, March 1996.

In quantum mechanics, identical particles are truly indistinguishable (Fig. 2). This
means that the wavefunction for these particles must return to itself, up to an overall
phase, when the particles are permuted:

Ψ(r1, r2, · · · ) = exp(iχ)Ψ(r2, r1, · · · ). (9)

10Alex didn’t bother with the factor (f (α)/o(G)), since he just wanted a vector in the subspace. We want
to make the sum over representations α equal to the original function. Alex also, I think, missed the complex
conjugate (but all his characters were real).

11There are many different conventions for Fourier series. Clearly state which one you are using.



where · · · represents potentially many other identical particles.

We can illustrate this with a peek at an advanced topic mixing quantum field theory
and relativity. Here is a scattering event of a photon off an electron, viewed in two
reference frames; time is vertical, a spatial coordinate is horizontal. On the left we see
two ‘different’ electrons, one which is created along with an anti-electron or positron e+,
and the other which later annihilates the positron. On the right we see the same event
viewed in a different reference frame; here there is only one electron, which scatters
two photons. (The electron is virtual, moving faster than light, between the collisions;
this is allowed in intermediate states for quantum transitions.) The two electrons on
the left are not only indistinguishable, they are the same particle! The antiparticle is
also the electron, traveling backward in time.12

e

e+
e e

e

e

Fig. 2 Feynman diagram: identical particles.

In three dimensions, χ must be either zero or π, corresponding to bosons and fermions.
In two dimensions, however, χ can be anything: anyons are possible! Let’s see how this
is possible.

In a two-dimensional system, consider changing from coordinates r1, r2 to the center-
of-mass vector R = (r1 + r2)/2, the distance between the particles r = |r2 − r1|, and
the angle φ of the vector between the particles with respect to the x̂ axis. Now consider
permuting the two particles counter-clockwise around one another, by increasing φ at
fixed r. When φ = 180◦ ≡ π, the particles have exchanged positions, leading to a

12This idea is due to Feynman’s thesis advisor, John Archibald Wheeler. As Feynman quotes in his Nobel
lecture, I received a telephone call one day at the graduate college at Princeton from Professor Wheeler, in
which he said, “Feynman, I know why all electrons have the same charge and the same mass.” “Why?”
“Because, they are all the same electron!” And, then he explained on the telephone, “suppose that the world
lines which we were ordinarily considering before in time and space - instead of only going up in time were
a tremendous knot, and then, when we cut through the knot, by the plane corresponding to a fixed time, we
would see many, many world lines and that would represent many electrons, except for one thing. If in one
section this is an ordinary electron world line, in the section in which it reversed itself and is coming back
from the future we have the wrong sign to the proper time - to the proper four velocities - and that’s equivalent
to changing the sign of the charge, and, therefore, that part of a path would act like a positron.”



boundary condition on the wavefunction

Ψ(R, r, φ, · · · ) = exp(iχ)Ψ(R, r, φ+ π, · · · ). (10)

Permuting them counter-clockwise (backward along the same path) must then13 give
Ψ(R, r, φ, · · · ) = exp(−iχ)Ψ(R, r, φ− π, · · · ). This in general makes for a many-valued
wavefunction (similar to Riemann sheets for complex analytic functions).

Why can’t we get a general χ in three dimensions?

(a) Show, in three dimensions, that exp(iχ) = ±1, by arguing that a counter-clockwise
rotation and a clockwise rotation must give the same phase. (Hint: The phase change
between φ and φ+ π cannot change as we wiggle the path taken to swap the particles,
unless the particles hit one another during the path. Try rotating the counter-clockwise
path into the third dimension: can you smoothly change it to clockwise? What does
that imply about exp(iχ)?)

Fig. 3 Braiding of paths in two dimensions. In two dimensions, one can distinguish
swapping clockwise from counter-clockwise. Particle statistics are determined by representa-
tions of the Braid group, rather than the permutation group.

Figure 3 illustrates how in two dimensions rotations by π and −π are distinguishable;
the trajectories form ‘braids’ that wrap around one another in different ways. You can’t
change from a counter-clockwise braid to a clockwise braid without the braids crossing
(and hence the particles colliding).

An angular boundary condition multiplying by a phase should seem familiar: it’s quite
similar to that of the Bohm-Aharonov effect we studied in exercise 2.4. Indeed, we
can implement fractional statistics by producing composite particles, by threading a
magnetic flux tube of strength Φ through the center of each 2D boson, pointing out of
the plane.

(b) Remind yourself of the Bohm-Aharonov phase incurred by a particle of charge e
encircling counter-clockwise a tube of magnetic flux Φ. If a composite particle of charge
e and flux Φ encircles another identical composite particle, what will the net Bohm-
Aharonov phase be? (Hint: You can view the moving particle as being in a fixed
magnetic field of all the other particles. The moving particle doesn’t feel14 its own

13The phase of the wave-function doesn’t have to be the same for the swapped particles, but the gradient
of the phase of the wavefunction is a physical quantity, so it must be minus for the counter-clockwise path
what it was for the clockwise path.

14Wilczek’s original paper, eqn (5), seems to suggest otherwise. I believe he assumes a contribution
to the phase due to the flux tube encircling the electron: two jumps in phase due to the singular gauge
transformation. I’m not absolutely sure why he’s wrong. But this is incompatible with more recent literature.



flux.)

(c) Argue that the phase change exp(iχ) upon swapping two particles is exactly half
that found when one particle encircles the other. How much flux is needed to turn a
boson into an anyon with phase exp(iχ)? (Hint: The phase change can’t depend upon
the precise path, so long as it braids the same way. It’s homotopically invariant, see
chapter 9 of “Entropy, Order Parameters, and Complexity”.)

Anyons are important in the quantum Hall effect. What is the quantum Hall effect?
At low temperatures, a two dimensional electron gas in a perpendicular magnetic field
exhibits a Hall conductance that is quantized, when the filling fraction ν (electrons per
unit flux in units of Φ0) passes near integer and rational values.

Approximate the quantum Hall system as a bunch of composite particles made up of
electrons bound to flux tubes of strength Φ0/ν. As a perturbation, we can imagine
later relaxing the binding and allow the field to spread uniformly.15

(d) Composite bosons and the integer quantum Hall effect. At filling fraction
ν = 1 (the ‘integer’ quantum Hall state), what are the effective statistics of the composite
particle? Does it make sense that the (ordinary) resistance in the quantum Hall state
goes to zero?

• The excitations in the fractional quantum Hall effect are anyons with fractional
charge. (The ν = 1/3 state has excitations of charge e/3, like quarks, and their
wavefunctions gain a phase exp(iπ/3) when excitations are swapped.)

• It is conjectured that, at some filling fractions, the quasiparticles in the fractional
quantum Hall effect have non-abelian statistics, which could become useful for
quantum computation.

• The composite particle picture is a centeral tool both conceptually and in calcu-
lations for this field.

15This is not nearly as crazy as modeling metals and semiconductors as non-interacting electrons, and
adding the electron interactions later. We do that all the time – ‘electons and holes’ in solid-state physics,
’1s, 2s, 2p’ electrons in multi-electron atoms, all have obvious meanings only if we ignore the interactions.
Both the composite particles and the non-interacting electron model are examples of how we use adiabatic
continuity – you find a simple model you can solve, that can be related to the true model by turning on an
interaction.


