Problem Set 12: Density Matrices Graduate Quantum I Physics 6572

James Sethna

Due Friday Nov. 14

Last correction at September 25, 2014, 2:48 pm

Potentially useful reading

Sakurai and Napolitano, section 3.4 (density matrices)

Schumacher & Westmoreland 8.1-2, 8.5, 8.7 (density matrices)

Weinberg pp.68,69 (density matrices)

Sethna, section 7.1 (density matrices)

Kittel, Introduction to Solid State Physics, chapter 18, subsection "Two barriers in series – resonant tunneling", edition 8, by Paul McEuen (α -decay).

12.1 Spin density matrix. (Quantum) ③

Density matrices are Hermitian $\rho^{\dagger} = \rho$ and have trace one.

(a) Show that any 2×2 density matrix may be written in the form

$$\rho = \frac{1}{2}(1 + \mathbf{n} \cdot \boldsymbol{\sigma}). \tag{1}$$

where **n** is a three-dimensional real vector.

Let the Hamiltonian for a spin be

$$\mathcal{H} = -\frac{\hbar}{2} \mathbf{B} \cdot \vec{\sigma},\tag{2}$$

where $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ are the three Pauli spin matrices, and **B** may be interpreted as a magnetic field, in units where the gyromagnetic ratio is unity. Remember that $\sigma_i \sigma_j - \sigma_j \sigma_i = 2i\epsilon_{ijk}\sigma_k$.

- (b) Show that the equations of motion for the density matrix $i\hbar\partial \boldsymbol{\rho}/\partial t = [\mathcal{H}, \boldsymbol{\rho}]$ can be written as $d\mathbf{n}/dt = -\mathbf{B} \times \mathbf{n}$.
- 12.2 Pure state density matrix evolution. (Sakurai and Napolitano, problem 3.11) 2
 - (a) Prove that the time evolution of the density operator ρ (in the Schrödinger picture) is given by

$$\rho(t) = U(t, t_0)\rho(t_0)U^{\dagger}(t, t_0).$$

(b) Suppose we have a pure ensemble at t = 0. Prove it cannot evolve into a mixed ensemble as long as the time evolution is governed by the Schrödinger equation.

¹Adapted from exam question by Bert Halperin, Harvard University, 1976.

12.3 Does entropy increase in quantum systems?. (Mathematics, Quantum) ③

One can show (Exercise (5.7) in my text, 'Entropy, Order Parameters, and Complexity') that in classical Hamiltonian systems the non-equilibrium entropy $S_{\text{nonequil}} = -k_B \int \rho \log \rho$ is constant in a classical mechanical Hamiltonian system. Here you will show that in the microscopic evolution of an isolated quantum system, the entropy is also time independent, even for general, time-dependent density matrices $\rho(t)$.

Using the evolution law $\partial \rho/\partial t = [\mathcal{H}, \rho]/(i\hbar)$, prove that $S = -\text{Tr}(\rho \log \rho)$ is time independent, where ρ is any density matrix. (Hint: Go to an orthonormal basis ψ_i which diagonalizes ρ . Show that $\psi_i(t)$ is also orthonormal, and take the trace in that basis. Use the cyclic invariance of the trace.)

12.4 F-electrons and graphene. (Quantum) ③

In this exercise, we shall explore how seven degenerate f-electron states of an atom split under a weak perturbation which breaks the rotational symmetry.

Atoms often sit atop surfaces with weak interactions without strong bonding; we describe them as *adsorbed*. Consider a light atom² in an electronic f-state (i.e., with $\ell = 3$), adsorbed on a monolayer of graphene (Fig. 1). Assume the atom is positioned above a point of hexagonal symmetry, so the symmetry group for the atom is broken from SO(3) to C_{6v} .

How do we know this? Why is the symmetry group not just C_6 ? Why is our system not symmetric under D_{6h} , the symmetry group of graphene?

(a) What symmetry is exhibited by our adsorbed atom that is not in C_6 ? What symmetry in D_{6h} is not a symmetry of our adsorbed atom?

The character of a spin- ℓ representation for SO(3) for a rotation by angle θ is $\chi^{(\ell)}(\theta) = \sin[(\ell + \frac{1}{2})\theta]/\sin[\frac{1}{2}\theta]$. (Check this for the $\ell = 1$ representation, where you know $\chi^{(1)}$ in terms of $\cos[\theta]$. You'll need to use L'Hôpital's rule to evaluate $\chi^{(\ell)}(0)$.)

Six of the symmetry operations in C_{6v} (conjugacy classes σ_v and σ'_v) are reflections – in O(3) but not in SO(3). The characters for representations of O(3) are not so commonly studied. Let's figure them out for the special case of reflections.

²The atom is light so that we may ignore the spins of the electrons. A heavy atom would have significant spin-orbit interactions.

C_{6v}	E	C_2	$2C_3$	$2C_6$	$3\sigma_v$	$3\sigma'_v$
$\overline{A_1}$	1	1	1	1	1	1
$\overline{A_2}$	1	1	1	1	-1	-1
B_2	1	-1	1	-1	1	-1
B_1	1	-1	1	-1	-1	1
E_2	2	2	-1	-1	0	0
E_1	2	-2	-1	1	0	0

Table 1: Character table for C_{6v}

Fig. 1 Atom adsorbed on graphene.

Every reflection $\Sigma(\hat{n})$ in O(3) takes the mirror plane into itself, and the perpendicular \hat{n} of the mirror plane to $-\hat{n}$. Thus $\Sigma(\hat{y})$ is a reflection in the x-z mirror plane. Let $R_{\hat{n}}$ be a rotation that takes the coordinate axis \hat{y} to \hat{n} .

(b) Using $R_{\hat{n}}$, show that all reflections in O(3) are conjugate to $\Sigma(\hat{y})$.

Since the trace is invariant under rotations, and conjugacy in SO(3) is a rotation, and the character is a trace, this means that all reflections will have the same character under representations of O(3). Consider the angular momentum ℓ representation of O(3) generated by the rotations of the spherical harmonics $Y_{\ell}^{m}(\theta, \phi)$. Remember that θ is the angle from the \hat{z} axis, and ϕ is measured from the \hat{x} axis.

(c) How does Y_{ℓ}^m transform under the reflection $\Sigma(\hat{y})$ in the x-z plane? In the $(2\ell+1)$ -dimensional space of Y_{ℓ}^m for fixed ℓ , what are the elements of the $(2\ell+1)\times(2\ell+1)$ matrix $D_{mm'}$ representing $\Sigma(\hat{y})$? Show that the trace $\chi^{(\ell)}(\Sigma(\hat{y})) = 1$, and hence that the character for all reflections is one in all (integer) representations of O(3), independent of ℓ .

Table 1 gives the character table for C_{6v} .

(d) When the f-electron eigenstates are split by the hexagonal crystal field from the graphene, what irreducible representations and degeneracies will be represented? (Hint: Use the orthogonality of the representations to decompose the $\ell = 3$ representation. Also, check that the total number of states equals the number of f-states.) For example,

your answer might be "Two non-degenerate eigenstates with reps A_1 and B_2 , and three doublet eigenstates, two with reps E_2 and one with rep E_1 .")