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Potentially useful reading
Sakurai and Napolitano, section 3.4 (density matrices)

Schumacher & Westmoreland 8.1-2, 8.5, 8.7 (density matrices)
Weinberg pp.68,69 (density matrices)
Sethna, section 7.1 (density matrices)

Kittel, Introduction to Solid State Physics, chapter 18, subsection “Two barriers in series –
resonant tunneling”, edition 8, by Paul McEuen (α-decay).

12.1 Spin density matrix.1 (Quantum) ©3
Density matrices are Hermitian ρ† = ρ and have trace one.

(a) Show that any 2× 2 density matrix may be written in the form

ρ =
1

2
(1 + n · σ). (1)

where n is a three-dimensional real vector.

Let the Hamiltonian for a spin be

H = −~
2
B · ~σ, (2)

where ~σ = (σx, σy, σz) are the three Pauli spin matrices, and B may be interpreted
as a magnetic field, in units where the gyromagnetic ratio is unity. Remember that
σiσj − σjσi = 2iεijkσk.

(b) Show that the equations of motion for the density matrix i~∂ρ/∂t = [H,ρ] can be
written as dn/dt = −B× n.

12.2 Pure state density matrix evolution. (Sakurai and Napolitano, problem 3.11) ©2
(a) Prove that the time evolution of the density operator ρ (in the Schrödinger picture)
is given by

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0).

(b) Suppose we have a pure ensemble at t = 0. Prove it cannot evolve into a mixed
ensemble as long as the time evolution is governed by the Schrödinger equation.

1Adapted from exam question by Bert Halperin, Harvard University, 1976.



12.3 Does entropy increase in quantum systems?. (Mathematics, Quantum) ©3
One can show (Exercise (5.7) in my text, ‘Entropy, Order Parameters, and Complex-
ity’) that in classical Hamiltonian systems the non-equilibrium entropy Snonequil =
−kB

∫
ρ log ρ is constant in a classical mechanical Hamiltonian system. Here you will

show that in the microscopic evolution of an isolated quantum system, the entropy is
also time independent, even for general, time-dependent density matrices ρ(t).

Using the evolution law ∂ρ/∂t = [H, ρ]/(i~), prove that S = −Tr (ρ logρ) is time
independent, where ρ is any density matrix. (Hint: Go to an orthonormal basis ψi

which diagonalizes ρ. Show that ψi(t) is also orthonormal, and take the trace in that
basis. Use the cyclic invariance of the trace.)

12.4 F-electrons and graphene. (Quantum) ©3
In this exercise, we shall explore how seven degenerate f -electron states of an atom
split under a weak perturbation which breaks the rotational symmetry.

Atoms often sit atop surfaces with weak interactions without strong bonding; we de-
scribe them as adsorbed. Consider a light atom2 in an electronic f-state (i.e., with
` = 3), adsorbed on a monolayer of graphene (Fig. 1). Assume the atom is positioned
above a point of hexagonal symmetry, so the symmetry group for the atom is broken
from SO(3) to C6v.

How do we know this? Why is the symmetry group not just C6? Why is our system
not symmetric under D6h, the symmetry group of graphene?

(a) What symmetry is exhibited by our adsorbed atom that is not in C6? What symmetry
in D6h is not a symmetry of our adsorbed atom?

The character of a spin-` representation for SO(3) for a rotation by angle θ is χ(`)(θ) =
sin[(`+ 1/2)θ]/ sin[1/2θ]. (Check this for the ` = 1 representation, where you know χ(1) in
terms of cos[θ]. You’ll need to use L’Hôpital’s rule to evaluate χ(`)(0).)

Six of the symmetry operations in C6v (conjugacy classes σv and σ′
v) are reflections – in

O(3) but not in SO(3). The characters for representations of O(3) are not so commonly
studied. Let’s figure them out for the special case of reflections.

2The atom is light so that we may ignore the spins of the electrons. A heavy atom would have significant
spin-orbit interactions.



C6v E C2 2C3 2C6 3σv 3σ′
v

A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B2 1 -1 1 -1 1 -1
B1 1 -1 1 -1 -1 1
E2 2 2 -1 -1 0 0
E1 2 -2 -1 1 0 0

Table 1: Character table for C6v

Fig. 1 Atom adsorbed on graphene.

Every reflection Σ(n̂) in O(3) takes the mirror plane into itself, and the perpendicular
n̂ of the mirror plane to −n̂. Thus Σ(ŷ) is a reflection in the x − z mirror plane. Let
Rn̂ be a rotation that takes the coordinate axis ŷ to n̂.

(b) Using Rn̂, show that all reflections in O(3) are conjugate to Σ(ŷ).

Since the trace is invariant under rotations, and conjugacy in SO(3) is a rotation, and
the character is a trace, this means that all reflections will have the same character
under representations of O(3). Consider the angular momentum ` representation of
O(3) generated by the rotations of the spherical harmonics Y m

` (θ, φ). Remember that
θ is the angle from the ẑ axis, and φ is measured from the x̂ axis.

(c) How does Y m
` transform under the reflection Σ(ŷ) in the x−z plane? In the (2`+1)-

dimensional space of Y m
` for fixed `, what are the elements of the (2` + 1) × (2` + 1)

matrix Dmm′ representing Σ(ŷ)? Show that the trace χ(`)(Σ(ŷ)) = 1, and hence that the
character for all reflections is one in all (integer) representations of O(3), independent
of `.

Table 1 gives the character table for C6v.

(d) When the f-electron eigenstates are split by the hexagonal crystal field from the
graphene, what irreducible representations and degeneracies will be represented? (Hint:
Use the orthogonality of the representations to decompose the ` = 3 representation.
Also, check that the total number of states equals the number of f-states.) For example,



your answer might be “Two non-degenerate eigenstates with reps A1 and B2, and three
doublet eigenstates, two with reps E2 and one with rep E1.”)


