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Potentially useful reading
Weinberg, section 3.7 (interpretations of quantum mechanics)

Sethna, Mössbauer, the X-ray Edge, and Macroscopic Quantum Effects, half-done draft
manuscript from years ago.

14.1 Quantum dissipation from phonons. (Quantum) ©2
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Fig. 1 Atomic tunneling from a tip. Any internal transition among the atoms in an
insulator can only exert a force impulse (if it emits momentum, say into an emitted photon),
or a force dipole (if the atomic configuration rearranges); these lead to non-zero phonon
overlap integrals only partially suppressing the transition. But a quantum transition that
changes the net force between two macroscopic objects (here a surface and a STM tip) can
lead to a change in the net force (a force monopole). We ignore here the surface, modeling
the force as exerted directly into the center of an insulating elastic medium.1See “Atomic
Tunneling from a STM/AFM Tip: Dissipative Quantum Effects from Phonons” Ard A. Louis
and James P. Sethna, Phys. Rev. Lett. 74, 1363 (1995), and “Dissipative tunneling and
orthogonality catastrophe in molecular transistors”, S. Braig and K. Flensberg, Phys. Rev.
B 70, 085317 (2004).

Electrons cause overlap catastrophes (X-ray edge effects, the Kondo problem, macro-
scopic quantum tunneling); a quantum transition of a subsystem coupled to an electron
bath ordinarily must emit an infinite number of electron-hole excitations because the
bath states before and after the transition have zero overlap. This is often called an
infrared catastrophe (because it is low-energy electrons and holes that cause the zero
overlap), or an orthogonality catastrophe (even though the two bath states aren’t just



orthogonal, they are in different Hilbert spaces). Phonons typically do not produce
overlap catastrophes (Debye–Waller, Frank–Condon, Mössbauer). This difference is
usually attributed to the fact that there are many more low-energy electron-hole pairs
(a constant density of states) than there are low-energy phonons (ωk ∼ ck, where c is
the speed of sound and the wave-vector density goes as (V/2π)3d3k).

However, the coupling strength to the low energy phonons has to be considered as well.
Consider a small system undergoing a quantum transition which exerts a net force at
x = 0 onto an insulating crystal:

H =
∑
k

p2k/2m+ 1/2mω2
kq

2
k + F · u0. (1)

Let us imagine a kind of scalar elasticity, to avoid dealing with the three phonon
branches (two transverse and one longitudinal); we thus naively write the displacement
of the atom at lattice site xn as un = (1/

√
N)
∑

k qk exp(−ikxn) (with N the number

of atoms), so qk = (1/
√
N)
∑

n un exp(ikxn).

Substituting for u0 in the Hamiltonian and completing the square, find the displacement
∆k of each harmonic oscillator. (Physically, the force F adds a small linear term
to the phonon mode with wavevector k, whose minimum becomes displaced by some
amount ∆k.) Let |F 〉 be the ground state of the harmonic oscillators under the force
F . Write the formula for the likelihood 〈F |0〉 that the phonons will all end in their
ground states, as a product over k of the phonon overlap integral exp(−∆2

k/8σ
2
k) (with

σk =
√
~/2mωk the zero-point motion in that mode). Converting the product to the

exponential of a sum, and the sum to an integral
∑

k ∼ (V/(2π)3
∫

d3k, do we observe
an overlap catastrophe?

Note that you’ve calculated the probability of a zero-phonon transition – the likelihood
that the quantum transition can happen without emitting any phonons is zero. But
the same argument shows that there is zero probability of emitting one phonon, or
any finite number of phonons. The only allowed transitions emit an infinite number of
low-energy phonons. The initial and final ground states are in ‘different Hilbert spaces’
– no finite number of excitations can connect them.

14.2 Decoherence.2 (Density Matrices) ©3
In this exercise, we will explore the effects of decoherence on a quantum system using
density matrices and the Bloch sphere. We will study the dynamics of spin-1/2 particles
in a magnetic field, with and without decoherence. We will work in the z-spin basis,
and denote the spins pointing parallel to and anti-parallel to the z-direction by |↑z〉 and

|↓z〉. The spins are subjected to a magnetic field ~B = Bx̂ in the x-direction. Convince
yourself that the Hamiltonian modeling this is H = −µ0B(|↑x〉〈↑x| − |↓x〉〈↓x|).
(a) Write this Hamiltonian in the z-spin basis.

2Developed in collaboration with Bhuvanesh Sundar.



(b) Suppose the initial wavefunction is |ψ(t = 0)〉 = |↑z〉. Solve the Schrödinger equa-
tion to find |ψ(t)〉. Do you observe that the spin oscillates between |↑z〉 and |↓z〉? What
is the frequency ω of the oscillation?

Recall from problem 11.1 that any 2×2 density matrix can be written as ρ = 1/2(1+~n·~σ).
The vector ~n is called the Bloch vector, and always has norm |~n| ≤ 1, forming the solid
Bloch sphere. (Remember σx = ( 0 1

1 0 ), σy = ( 0 −i
i 0 ), and σz = ( 1 0

0 −1 ).)

(c) Calculate ρ(t) for |ψ(t)〉 from your calculation in part (b), in terms of ω. Calculate
~n(t), and use the double angle formulas to simplify your answer. Geometrically, what
is the trajectory of ~n(t)? Show that this agrees with your solution3 to exercise 11.1,

d~n/dt ∝ − ~B × ~n.

(d) Show that the eigenvalues of a general 2×2 density matrix ρ = 1/2(1 + ~n · ~σ) are
1/2(1±|~n|). What is the entropy S = −kBTr(ρ log ρ) of a general density matrix in terms
of ~n? (Hint: use the basis in which ρ is diagonal, and your eigenvalues.) Show that the
zero-entropy pure states are those on the surface |~n| = 1 of the Bloch sphere. (Hint:
x log x is negative for 0 < x < 1, and equal to 0 at the end points x = 0 and x = 1.)
Does your solution ~n(t) from part (c) stay a zero entropy pure state, as it should?

Decoherence arises in a system due to interaction with a large environment. Essentially,
the universe is constantly looking at our system, and as a result of interaction with the
rest of the universe, our spins get entangled with the universe. Since we observe only
the spins and do not observe the infinitely many degrees of freedom in the rest of the
universe, it appears to us that the spins lose information about any coherences they
may have developed.

(e) How does a general density matrix ρ = ( ρ11 ρ12ρ21 ρ22 ) written in the z basis change when
its sz component is measured? Show that the effect of a measurement in the z-basis is
to project ~n onto the z-axis.

For the remainder of the exercise, we consider the evolution under the specific hamil-
tonian H you studied in parts (a) through (c). We shall model decoherence as a
measurement being done on the spins with small probability Γ per unit time. In a
small time interval δt, the spin is measured in the z-basis with a probability Γδt, and
not measured with a probability 1− Γδt, and then the system evolves for a time δt.

(f) What is ~n(t+ δt) in terms of ~n(t), including first the possibility of observation and
then the time evolution from H? Write a differential equation for the components of
~n(t) by taking δt→ 0.

(g) Show that nz obeys the second-order differential equation for a damped harmonic
oscillator, d2nz/dt

2 + ηdnz/dt+ ω2
0nz = 0. What are η and ω0 in terms of Γ and ω?

(h) What is the long-time limit for ~n? For ρ? For the entropy?

3That exercise had funny units, but the form of the equation and the sign should agree.



14.3 Solving Schrödinger: WKB, resonances, and lifetimes. (Computation) ©3
We study the problem of quantum tunneling through a barrier. We shall use a potential
in the form of a cubic polynomial.4

V (y) = 1/2mω
2(y2 − y3/Q). (2)

You should observe that this potential has frequency ω for small oscillations in the well,
and has a turning point at y = Q. (The turning point is where the potential energy
goes to zero again.)

Remember that the instanton formula for the tunneling decay rate is of the form

Γ0 exp(−S0/~) = Γ0 exp

(
−2

∫ Q

0

√
2mV (q)dq/~

)
(3)

where Γ0 is a prefactor of order ω that we will estimate numerically. Note the factor of
two in the exponent compared to the symmetric double well tunnel splitting: the in-
stanton bounce for decay out of a metastable well crosses the barrier twice.5 Remember
that a0 =

√
~/(2mω) is the root-mean-square width of the ground state wavefunction

in the well in the harmonic approximation.

(a) If we set Q = n0a0, calculate the barrier height Vmax and the instanton action
S0/~. Simplify your answer: it should only depend on n0. (Hint: If you aren’t using
a symbolic manipulation package like Mathematica, you can do the integral for S0/~
numerically, by changing variables and pulling out all the factors of m, ~, ω, n0, etc.)

How tall and wide a barrier can one tunnel through in a reasonable time? It depends
on what’s considered reasonable. For our simulation, we shall simulate 1000 periods
of the oscillation P = 2π/ω. In an experiment with a few molecules, one can wait for
a few seconds. In a radioactive decay experiment, where 1023 potential decays can be
monitored, one can measure lifetimes of billions of years. For this calculation, pretend
that the true decay rate is given by eqn 3 with Γ0 = ω = 1012/sec.

(b) How big can n0 be to get a lifetime of 1000P? Of one second? Of a billion years?
How big is Vmax and Q, in units of Rydbergs and Bohr radii? (Hint: There are
approximately π×107 seconds in a year. The Bohr radius is ~/(αmec) and the Rydberg
is mec

2α2/2, where the fine structure constant α = e2/~c ≈ 1/137.036.)

It may be remarkable how little the barrier changes to make such a large difference in
the tunneling.

4The cubic potential is not only convenient for analytic calculations, it also approximates a generic po-
tential when the barrier is low. (More precisely, it approximates a generic potential near the saddle-node
transition when the barrier vanishes.) We saw in exercise (6.1) that tunneling of atoms is very slow unless
the barrier is low and narrow compared to the typical scales of one Rydberg and one Bohr radius.

5In the symmetric well, ψ leaks through the barrier. In the decay from the metastable well, probability
ψ∗ψ must escape, leading to two suppression factors. This rough argument can be made precise in simple
two-level models.



We set Q = 5a0 (hence n0 = 5) to get a reasonable tunneling rate. We set m to be the
mass of a hydrogen atom and ω = 1012/sec. Our WKB formula is asymptotically exact
in the limit when the barrier height is many times the energy splitting ~ω in the well.

(c) What is the ratio of the barrier height Vmaxto ~ω? Is Vmax at least larger than the
zero point energy 1/2~ω?

We’ll use a grid of length L = 80a0 with Np = 200 points. As the wavefunction leaks
out of the well, we need it to disappear before it reflects back into the well. There are
several ways of doing this, mathematically and numerically. We shall do it by adding
a negative imaginary part to the potential energy Vdamp:

U(t) = e−i(H−iVdamp[x])t/~ = e−Vdamp[x]t/~−iHt/~ (4)

This imaginary part depletes the wavefunction exponentially with a rate Vdamp[x]/~
wherever it is non-zero. We shall make Vdamp zero near the well and the barrier,
starting linearly at |y| > xD = L/10 = 8a0 = 1.6Q with slope −2~ω/L Plot the real
and imaginary parts of V (x), and check them against Fig. 2.
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Fig. 2 Real and imaginary part of V (x).

Letting the time step dt = P/50 = 2π/(50ω), make an array Upot(dt/2) as usual, but
incorporating both the real and imaginary parts of the potential energy. Make the
array Ukin(dt) as usual, and start the wavefunction in the harmonic-oscillator ground
state in the well. Using our operator-splitting Fourier method based on the Baker-
Campbell-Hausdorff formula (Exercise 5.6), iterate to 1000P = 50000dt. (This should
take a good fraction of a minute.)



(d) On a single plot, show |ψ(x, t)|2 versus x for t = 0, 200P , and 800P . Does it appear
to be exponentially decaying?

(e) Write a routine to integrate P (t) =
∫
|ψ(x, t)|2dx over the system, to see what

fraction of the probability has not escaped the well and been eaten by the imaginary
potential. Fit your answer, for t > 40P , to determine the exponential decay rate Γ.
Use this to measure the prefactor Γ0 that would make eqn 3 correct. What is the ratio
of Γ0 to our rough estimate ω?


