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This is an open-book exam. You may use any texts, software packages, or Internet resources
that don’t involve communication with other people. No consultation, of course, with others.
Questions about the exercises should be addressed to Sethna, who will likely provide needed
clarifications or corrections to the entire class.

F.1 Your name. (Administration) ©3
(a) (5 points.) Make sure your name is on the upper right-hand corner of each page of
your exam writeup. Number the pages, so we can make sure we haven’t lost any.

(b) (5 points.) On the front page of your exam, please write and sign a brief statement
saying that ”I have not used, obtained, or provided unauthorized assistance on this
exam.” (If you inadvertently do use, obtain, or provide assistance on this exam, contact
Sethna for retroactive authorization and adjudication.)

(c) (0 points.) If you find uncomfortably useful resources for doing any of the exercises
(such as a worked-out version on the Web), please clearly acknowledge the source. No
points will be deducted from your solution, but we’d like to know.

F.2 F-electrons and graphene. (Quantum) ©3
In this exercise, we shall explore how seven degenerate f -electron states of an atom
split under a weak perturbation which breaks the rotational symmetry.

Atoms often sit atop surfaces with weak interactions without strong bonding; we de-
scribe them as adsorbed. Consider a light atom1 in an electronic f-state (i.e., with
` = 3), adsorbed on a monolayer of graphene (Fig. 1). Assume the atom is positioned
above a point of hexagonal symmetry, so the symmetry group for the atom is broken
from SO(3) to C6v.

How do we know this? Why is the symmetry group not just C6? Why is our system
not symmetric under D6h, the symmetry group of graphene?

(a) (20 points) What symmetry is exhibited by our adsorbed atom that is not in C6?
What symmetry in D6h is not a symmetry of our adsorbed atom?

The character of a spin-` representation for SO(3) for a rotation by angle θ is χ(`)(θ) =
sin[(`+ 1/2)θ]/ sin[1/2θ]. (Check this for the ` = 1 representation, where you know χ(1) in
terms of cos[θ]. You’ll need to use L’Hôpital’s rule to evaluate χ(`)(0).)

1The atom is light so that we may ignore the spins of the electrons. A heavy atom would have significant
spin-orbit interactions.



C6v E C2 2C3 2C6 3σv 3σ′v
A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B2 1 -1 1 -1 1 -1
B1 1 -1 1 -1 -1 1
E2 2 2 -1 -1 0 0
E1 2 -2 -1 1 0 0

Table 1: Character table for C6v

Six of the symmetry operations in C6v (conjugacy classes σv and σ′v) are reflections – in
O(3) but not in SO(3). The characters for representations of O(3) are not so commonly
studied. Let’s figure them out for the special case of reflections.

Fig. 1 Atom adsorbed on graphene.

Every reflection Σ(n̂) in O(3) takes the mirror plane into itself, and the perpendicular
n̂ of the mirror plane to −n̂. Thus Σ(ŷ) is a reflection in the x − z mirror plane. Let
Rn̂ be a rotation that takes the coordinate axis ŷ to n̂.

(b) (20 points) Using Rn̂, show that all reflections in O(3) are conjugate to Σ(ŷ).

Since the trace is invariant under rotations, and conjugacy in SO(3) is a rotation, and
the character is a trace, this means that all reflections will have the same character
under representations of O(3). Consider the angular momentum ` representation of
O(3) generated by the rotations of the spherical harmonics Y m

` (θ, φ). Remember that
θ is the angle from the ẑ axis, and φ is measured from the x̂ axis.

(c) (20 points) How does Y m
` transform under the reflection Σ(ŷ) in the x − z plane?

In the (2`+ 1)-dimensional space of Y m
` for fixed `, what are the elements of the (2`+

1) × (2` + 1) matrix Dmm′ representing Σ(ŷ)? Show that the trace χ(`)(Σ(ŷ)) = 1,
and hence that the character for all reflections is one in all (integer) representations of
O(3), independent of `.

Table 1 gives the character table for C6v.

(d) (40 points) When the f-electron eigenstates are split by the hexagonal crystal field



from the graphene, what irreducible representations and degeneracies will be repre-
sented? (Hint: Use the orthogonality of the representations to decompose the ` = 3
representation. Also, check that the total number of states equals the number of f-
states.) For example, your answer might be “Two non-degenerate eigenstates with
reps A1 and B2, and three doublet eigenstates, two with reps E2 and one with rep
E1.”)

F.3 Juggling buckyballs. (Path Integrals) ©3
Paul McEuen in Physics and Jiwoong Park in Chemistry here discovered in 2000 that
buckyballs (C60 molecules) bounce inside their transistors.2 Here use path integrals to
discuss how buckyballs evolve under juggling. (We’ll focus on juggling one buckyball,
by throwing it straight up into the air and waiting for it to fall down.) The Lagrangian
for the buckyball is

L = 1/2mẏ
2 −mgy. (1)

(a) (10 points) In classical mechanics, if the buckyball starts and ends at y = 0 and
travels for a time 2∆t, how high ypeak must its trajectory reach at the midpoint? (Hint:
Nothing tricky yet.)

Feynman tells us that the propagator for a particle starting at (y = yi, t = ti) and
ending at (y = yf , t = tf ) is a path integral over all trajectories y(t):

〈yf , tf |yi, ti〉 =

∫∫∫ yf ,tf

yi,ti

D[y(t)] exp (i/~S[y(t)]) =

∫∫∫ yf ,tf

yi,ti

D[y(t)] exp

(
i/~

∫
Ldt

)
(2)

where the three integral signs represent a suitably normalized integral over all paths
y(t). We, like Feynman, will make a discrete ‘trapezoidal rule’ approximation to the
propagator. As a rough example, we’ll do two segments and only one intermediate
point y2:

S[y(t)] ≈

[
1/2m

(
y3 − y2

∆t

)2

− 1/2mg(y1 + y2)− 1/2mg(y2 + y3) + 1/2m

(
y2 − y1

∆t

)2
]

∆t.

(3)

(b) (20 points) What intermediate point y∗2 minimizes the trapezoidal action (eqn 3), for
general y1 and y3? For y1 = y3 = 0, how does this compare to the peak of the trajectory
in part (a)? What is the action S∗ = S[y∗2] for this minimum action trajectory? (Note:
we’re doing an approximation; the heights need not be the same. Hint: Check units of
S∗. Also, does it have the right sign?)

(c) (30 points) What is our one-point trapezoidal approximation to the propagator
〈y = 0, t = 2∆t | y = 0, t = 0〉? (Request: Please write your answer factoring out the
contribution from the minimum action part S∗. Hints: Don’t forget the ‘weight factor’

2See “Nanomechanical oscillations in a single-C60 transistor”, by Hongkun Park, Jiwoong Park, Andrew
K.L. Lim, Erik H. Anderson, A. Paul Alivisatos, and Paul L. McEuen, Nature 407, 57-60 (2000).



from Sakurai. You can check that you’ve included the right number of weight factors by
checking the units of your propagator: at tf = ti, for example, 〈yf , ti|yi, ti〉 = δ(yf − yi)

has units of inverse length. Also,
∫∞
−∞ dx exp(−iAx2) =

√
π/iA.)

F.4 Resonances: α-decay. (Quantum) ©3

R−R

Fig. 2 One-dimensional nuclear potential.

In this exercise, we solve a one-dimensional model of radioactive α-decay, where a
nucleus ejects a particle formed by two protons and two neutrons (a Helium-4 nucleus).

We assume that the strong force minus the Coulomb repulsion provides a constant
potential for the α particle inside a nucleus of radius R, which for simplicity we shall
assume is zero. At the edge of the nucleus in the real world, the (short-range) strong
interaction drops rapidly to zero, but the Coulomb repulsion decays slowly with dis-
tance, leading to a tunneling barrier. We model this barrier with a δ-function of strength
U > 03 (see Fig. 2). Outside the nucleus, the potential is zero:

V (x) = 0 (|x| < R)

V (x) = Uδ(x±R) (x = ∓R)

V (x) = 0 (R < |x| <∞)

(The attractive case U < 0 is a model for hydrogen, and is discussed for exam-
ple in Wikipedia’s Double Delta Potential article, http://en.wikipedia.org/wiki/Delta
potential#Double Delta Potential.)

Parts (a)-(d) of this exercise solve analytically for the energy eigenstates, but getting
them correct is important for the later parts.4

Our Hamiltonian has a symmetry which allows us to choose energy eigenstates that are
even (ψE) or odd (φE).

3 In one-dimensional quantum mechanics, the first derivative of the wave-function jumps where the po-
tential has a δ-function. Find details in a textbook or on the Web.

4Feel free to check your answers by solving Schrödinger’s equation numerically, approximating δ(x−R) =
(1/
√

2πσ2) exp(−x2/(2σ2)) for σ as small as is numerically convenient.



(a) (10 points) What symmetry of the Hamiltonian is this? Given an energy eigenstate
ζE(x) with mixed symmetry (in particular, ζE is not odd), construct an even eigenstate
of the same energy (ignoring the overall normalization).

In this exercise, we will be interested in the family of states ψE which can be non-zero
at x = 0.

(b) (10 points) For the eigenstates ψE which are non-zero at x = 0, what is ψ′E(0) =
(∂ψE/∂x)|x=0?

Next we want to solve for the energy eigenstates. This is best done in three steps. First,
we deduce the form of the wavefunction. Note that, away from the δ-function, the wave-
function has wave-vector k(E) =

√
2mE/~; it is convenient to label the wavefunctions

by k(E) instead of E.

Using the boundary condition at zero, we write the wavefunction for |x| < R as ψnuc
k =

Ak cos(kx), with an overall amplitude Ak. For x > R, we write the wavefunction as
a standing sine wave5 ψout

k = B sin(kx + ∆k). Note that there is a continuum of ψk

eigenstates, so it is proper for us to use the δ-function normalization 〈ψk|ψk′〉 = δ(k−k′).
(c) (20 points) Show that B = 1/

√
π for our continuum wavefunction to be properly

normalized. (Hints: Since we’re studying only even eigenstates, k ≥ 0. Also, because
the region |x| < R is finite, we can ignore it for the normalization in an infinite box.)

We then impose the conditions induced by the δ-potential at the edge of the nucleus.

(d) (20 points) Write the condition on Ak and ∆k given by imposing continuity of
ψk(x) at x = R. Write the conditions on Ak and ∆k given by the discontinuity of
ψ′k(x) imposed by the δ-function potential (see footnote 3). For convenience, write

your answers from here on in terms of the unitless ratio Ũ = 2mRU/~2.

We can now solve for the eigenstates of our Hamiltonian that are non-zero at x = 0.

(e) (20 points) Use the conditions of part (d), solve for A2
k. (Trick: Arrange the two

equations of part (d) to be sin(kR + ∆k) = · · · and cos(kR + ∆k) = · · · , where · · · is
independent of ∆k. Sum the squares of the right-hand sides: what must the sum be
equal to?)

We now consider the decay of an α-particle injected into this potential at x = 0. That
is, consider an initial wavefunction Ψ(x) = δ(x).6

(f) (10 points) What is the probability7 P (k) of being in eigenstate ψk? (Write your
answer abstractly in terms of ψk(x). This you can do without solving parts (a-d).)

5For x < −R, we use the even symmetry of ψE to set ψk = ψout
k (−x) = B sin(−kx+ ∆k). Note that we

are solving for standing waves in this problem. For other purposes, scattering waves or outgoing waves might
be preferable.

6This is a nuclear version of tunneling from an STM tip; P (E) = P (k(E))/(dk/dE) measures the local
density of states for the α particle at the center of the nucleus.

7The position eigenstate Ψ(x) = |x = 0〉 is δ-function normalized, with 〈x|x′〉 = δ(x − x′). Hence the
‘probability’ P (k) integrates to infinity, and not to one.



(g) (20 points) Plot the probabilities P (k) versus kR with Ũ = 30 and for 0 < kR < 10.

In the limit U →∞, the nucleus should approximate a particle in a box of size 2R. In
that limit, the injection of an α-particle can only occur at certain discrete energies –
the nuclear eigenstates E∞m of a free particle in a box of size 2R.

(h) (20 points) Compare the peaks you found in part (g) to the wavevectors for the
particle-in-a-box states. Why are you missing half of the peaks?

(i) (Extra credit, up to 20 points for elegant answers.) Find the density of states P (E)
from P (k). Using the FWHM of the peaks, estimate the lifetimes of the first three even
resonances of our nucleus (either numerically or analytically). Calculate the integrated
probability for being in each of these three resonances. Do they go to the ‘particle-in-a-
box’ values as U →∞?


