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We discuss materials science examples of quantum phenomena embedded in a macroscopic, clas-
sical world. We present simple derivations showing the effects of the external world on gamma-
ray emission (the Mössbauer effect), X-ray absorbtion (the overlap catastrophe), and on tunneling
(macroscopic quantum tunneling and the Kondo effect). We draw some experimental lessons about
the role of the external world in “collapsing” the wave function.
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Textbook quantum mechanics usually focuses on isolated systems: a hydrogen atom in empty space. Qualitatively
new effects can occur when small quantum systems interact with the external world. The quantum mechanics of
defects in solids are an ideal place to study these effects: the quantum system is embedded directly into the crystalline
environment!

We discuss here classic examples of exotic quantum phenomena occuring for defects in solids. For perspective, we
begin by outlining various philosophical approaches to the problem of quantum systems interacting with the external
world. We then discuss four classic physical systems: the Mössbauer effect [1, 2] of gamma decay from nuclei in solids,
the X-ray edge effect for absorption of X-rays by core states in metals, the Kondo effect of magnetic impurities in
metals, and the problem of macroscopic quantum coherence in quantum tunneling. We attempt to explain the physics
of these systems with a minimum of computation: we’ll refer to results of more complete many-body calculations
when appropriate.

SCHRÖDINGER’S CAT

The profound mystery of quantum mechanics resolves around the “collapse of the wave function”. Quantum
mechanics describes an electron as being in a superposition of many different possible states: the fact that we must
use a wave function ψ(x) for the electron represents the fact that it isn’t in at any particular point x, but rather it is
in many possible places with probability density |ψ(x)|2. When an electron collides with a proton, or absorbs light,
or diffracts off a crystal, one must treat the evolution of the wave-function as a whole to predict the behavior: the
electron really is not in any one position, but is genuinely split between many. As far as we know, quantum mechanics
describes all objects — indeed the universe as a whole — in precisely the same way.

How can we reconcile quantum mechanics, describing us as superpositions, with ordinary reality, where common
objects have definite states? For example, consider the wave-function ψ(r) of an α-particle being emitted by a
radioactive nucleus (Figure 1). After one half-life of the nucleus, the wave-function is half inside the nucleus and half
outside: schematically

|ψ(r, t1/2)〉 = (|Whole〉 + |Decayed〉)/
√

2 (1)

We have been forced by various experiments to conclude that the correct description of atomic and nuclear-scale
phenomena must involve this kind of superposition. What happens, though, when we add a Geiger detector to our
quantum system, guaranteed to trigger as soon as the nucleus decays? Or, as Schrödinger suggested, a Geiger counter
connected to a fiendish device to do away with the scientist’s cat (Figure 2)?

According to the original, Copenhagen interpretation of quantum mechanics [3], the wave-function of the α-particle
would “collapse” into one of the two states |Whole〉 or |Decayed〉 as soon as the particle hits the quasi-classical Geiger
detector. According to some authors [4, 5], the wave-function is collapsed only when it is observed by an “intelligent
being” (presumably the cat). One can avoid introducing this additional “collapse” operation into quantum mechanics
by turning to the many–worlds interpretation of quantum mechanics. So long as the system remains perfectly isolated
from the rest of the world, the cat is in a superposition of states perfectly correlated with those of the particle:

|Ψ(Xcat, r, t1/2)〉 =



2
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FIG. 1: Radioactive α decay. The thick line represents the wave-function ψ(r) of the α-particle, as a function of the distance
r from the center of the nucleus. The potential energy (thin line) is low and nearly constant inside the nucleus. The particle has
an even lower energy outside the nucleus (hence the decay), but must cross a large barrier to depart (hence the long lifetime).
Once the particle has leaked out to the point r0, it flies away: ψ(r) becomes a outward-propagating wave. Details aside, the
main point is that after a half-life of the particle, the wave-function ψ is half inside the nucleus and half outside.

alpha decay

Observer

CatGeiger Counter

FIG. 2: Schrödinger’s cat is in a box completely isolated from the rest of the world. When the Geiger counter detects that the
nucleus has decayed, it triggers a hammer which “shatters a little flask of prussic acid.”

(|Whole〉|Alive〉 + |Decayed〉|Dead〉)/
√

2 (2)

The “many worlds” occur when the box is opened, and the experimentalist’s clean-up becomes contingent on the
quantum state of the nucleus:

|Ψ(Xcat, r, t1/2)〉 =

(|Whole〉|Alive〉|BuyKittyLitter〉 (3)

+|Decayed〉|Dead〉|RIP〉)/
√

2.

Even though the many–worlds and wavefunction–collapse formulations are essentially equivalent, they are psy-
chologically and philosophically opposed to one another. A reformulation which bypasses these tensions has been
formulated by Mermin [6] as the “Ithaca interpretation” of quantum mechanics. He states that quantum mechanics
is best considered a theory of correlations, which have physical reality. One may ask only whether burying the cat is
correlated with the decay of the nucleus, for which the answer is both unambiguous and uncontroversial.
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Are these questions physics or philosophy? Experimentally, is there a difference between the “collapse” and the
“many–worlds” views? Can we do a further experiment to see if the Geiger counter and the cat collapsed the
wavefunction? According to quantum mechanics, if one repeats an experiment many times, the average result can
always be described by the expectation values of an operator O: 〈O〉 = 〈Ψ(Xcat, r, t1/2)|O|Ψ(Xcat, r, t1/2)〉. So long
as our experiment O is probing the nucleus (and not the Geiger counter, the cat, or the experimenter), this quantity
splits into four parts:

〈O〉 = (1/2) 〈Whole|O|Whole〉〈Alive|Alive〉
+(1/2) 〈Decayed|O|Decayed〉〈Dead|Dead〉
+(1/2) 〈Whole|O|Decayed〉〈Alive|Dead〉 (4)

+(1/2) 〈Decayed|O|Whole〉〈Dead|Alive〉
= (1/2) (〈Whole|O|Whole〉 + 〈Decayed|O|Decayed〉)
+(1/2) 〈Whole|O|Decayed〉〈Alive|Dead〉 (5)

+(1/2) 〈Decayed|O|Whole〉〈Dead|Alive〉.

The first two terms are easy to understand. We’ve waited for one half-life, so we measure on average half the
decayed value of O and half of the value of O for the whole nucleus. If we subscribe to the “collapse” view, this is
the end of the calculation: as soon as the presence or absence of the α particle is detected by the outside world, the
wavefunction of the nucleus is projected onto the corresponding state: (|Whole〉 + |Decayed〉)/

√
2 becomes (|Whole〉

or |Decayed〉) each with probability 1/2. If we subscribe to the “many–worlds” point of view, we must calculate
the other two terms, involving the overlap 〈Dead|Alive〉. These terms represents the interference between the two
branches of the wave function. The two views agree in practice because the overlap is zero:

〈Dead|Alive〉 = 0. (6)

Because the cat has so many atoms, death is unambiguously identifiable: gas diffusion, body temperature, and other
forensic evidence clearly distinguish |Dead〉 from Alive〉.
|Dead〉 and Alive〉 not only have zero overlap: they live in different Hilbert spaces. More precisely, in the approxima-

tion that the number of particles N in the cat goes to infinity (the cat has N ∼ 1026) the overlap 〈Dead|Q|Alive〉 = 0
for any operator Q involving finite numbers of single-particle excitations. (Rearranging six atoms or 106 atoms won’t
make a dead cat come alive again.) Mathematically, this means that one can start with the two states |Dead〉 and
Alive〉, build in all the particle excitations (Fock space), and get two entirely different, non-overlapping Hilbert spaces
for the wavefunctions. What this means is that experiments which observe quantities 〈O〉 which involve the Geiger
counter and the cat also can’t show interference. Once a macroscopic detector or being is involved in an essential way
in the experiment, the wave function splits into non-interfering pieces. Whether you describe this with a collapse into
one piece, or as multiple non-interfering future worlds, makes no difference when cats are involved.

An isolated atom exhibits quantum interference. An atom coupled to a cat does not. Can experiments be performed
in between, to explore the mystery of the collapse of the wavefunction? There are indeed many experimental systems
where a quantum system is coupled to an external environment. We’ll study atoms and electrons which are stuck
directly inside a solid. None of these systems behaves like Schrödinger’s thought experiment! Nature is far more
imaginative than philosophy: the coupling to the solid produces fascinating, unanticipated results that took decades
to untangle.

The key to understanding the effects of the environment on the quantum system turns out to be precisely the
analogue of the overlap 〈Dead|Alive〉. Instead of a cat, the environment is a crystal. We’ll start by discussing the
effects of the positions of the atoms in the crystal when a quantum transition occurs. The positions of the atoms have
their quantum wavefunction too: their quantum excitations are called phonons. In the Mössbauer effect we’ll find
that the quantum overlap between the two phonon wavefunctions is not zero (despite the huge number of degrees of
freedom). Bizarre and useful quantum effects result! We’ll see that quantum tunneling of atoms in insulating solids
usually also has non-zero quantum overlap, but that for one–dimensional chains and for tunneling of atoms from one
surface to another the quantum overlap can go to zero.

We’ll also consider metals, where it is the wavefunction for the conduction electrons which acts as the environment
for the quantum defect. Here we find that it’s quite normal for the overlap of the quantum states to be zero, no matter
how delicate the coupling to the quantum transition. We’ll give a brief, qualitative discussion of several experimental
systems: quantum dots, the Kondo effect, and the X-ray edge effect.



4

Schrödinger’s cat inspires us to focus on the quantum overlaps of the environment under different histories, and it
provides an intellectual link between zero overlap and the collapse of the wavefunction. We’ll find in each case that
the interaction of the quantum system with the environment produces qualitative changes in behavior. From the
quantum suppression of recoil and thermal motion in the Mössbauer effect to the power laws and scaling in the X-ray
edge effect, the environment is closely tied into the quantum behavior.

PHONONS: MÖSSBAUER, OVERLAPS, AND INSTANTONS

The Mössbauer Effect

Let’s take our nuclear decay and embed it into a solid. Instead of α radiation, let’s have the nucleus emit a gamma
ray. (Figure 3). This has a big advantage, in that the gamma ray, like X-rays, can penetrate feet of matter without
leaving a trace, while the α particle leaves a trail behind it as it leaves the solid. (The trail would kill the interference
effects.)

p2

p
1

p
γ

pγ

FIG. 3: (Left) Nuclear γ decay in a (finite-temperature) gas. Notice that the gamma ray photon of frequency ω has momentum

pγ = h̄ω/ck̂, so by conservation of momentum the atom changes from its original thermal momentum p1 to p2 = p1 − pγ .
(Right) Nuclear γ decay in a solid (at zero temperature). The decaying atom is left with a large recoil velocity.

How does the quantum decay affect the atoms in the crystal? When the γ particle leaves the nucleus, the atom
recoils (figure 3). The quantum mechanics of how this recoil changes the quantum wavefunction of the atoms will tell
us about the energy and properties of the emitted gamma ray.

At this point, we have to do some calculations. Let’s assume the gamma ray is emitted in the x direction from
atom of mass m at position zero, and has frequency Ω. The recoil velocity of the atom is then

ẋ0 = −pγ/m = −h̄Ω/mc. (7)

We need to change variables to phonon coordinates: a configuration of N atoms with lattice sites Xn and displaced
positions xn = Xn + un is the same as a superposition of sound waves of amplitudes qk, with

qk =

N
∑

n

une
ik·Xn/

√
N. (8)

By doing this, the interaction energy between the atoms becomes very simple: each sound wave is independent and
has a frequency ωk. (If you don’t like complex coordinates, you can do this with sines and cosines, but it’s messier.)
We’ll need to know two things [7]: for long wavelengths ωk is given by the speed of sound

ωk ∼ c |k| as k → 0 (9)

and for N atoms there are N different k vectors, arranged with uniform density V/8π3 around zero.[19]
If we start the atoms at zero temperature, then after the decay only atom zero will be moving. Using (7) for ẋ0

and setting xn ≡ 0 otherwise, we find

q̇k =

N
∑

n

ẋne
ikn/

√
N = − pγ√

Nm
, (10)

so all phonon modes moving in the x direction will be equally excited, each by a tiny amount which vanishes as
N → ∞.

At zero temperature, the solid is described by the wavefunction

Ψi(qk1, ...qkN ) = ψi(qk1)ψi(qk2)... (11)
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which factors into a product of ground–state harmonic–oscillator wavefunctions involving one mode qk at a time:

ψi(qk) = (mωk/πh̄)
1/4e−mωkq2

k/2h̄ (12)

After the decay, the velocity of mode k is q̇k = − pγ√
Nm

(from 10). Emission of electromagnetic radiation happens

essentially instantaneously, so the atoms don’t move substantially during the decay: |ψf (qk)|2 = |ψi(qk)|2. The change
in velocity multiplies the wavefunction of each mode by a phase:

ψf (qk) = e−ipγqk/
√

Nh̄ψi(qk). (13)

so

Ψf (qk1, ...qkN ) = ψf (qk1)ψf (qk2)... (14)

(This is standard: you can see that it works by noticing that the velocity q̇k times |ψf (qk)|2 equals the current density
ih̄/2m(ψ∇ψ∗ − ψ∗∇ψ).)

Now, the total energy emitted by the nucleus is pretty nearly fixed: if the decay leaves the phonons in an excited
state, the energy (and hence the frequency) of the gamma ray is shifted down. Mössbauer discovered [1, 2], despite
the recoil, that there is a large probability for the lattice to be left in the same state it started in! The probability
that the wave-function Ψf is in the ground state is (as usual) given by the overlap

|〈Ψi|Ψf 〉|2 =
kN
∏

k=k1

|〈ψi(qk)|ψf (qk)〉|2. (15)

We compute the overlap for each mode by completing the square:

〈ψi|ψf 〉 =
∫

e−i(pγ/
√

Nh̄)qk(mωk/πh̄)
1/2e−mωkq2

k/h̄ dqk

=
∫

(mωk/πh̄)
1/2e−mωk(qk−ipγ/2mωk

√
N)2/h̄ dqk

× exp(−p2
γ/4mNh̄ωk)

= exp(
−p2

γ

4mNh̄ωk
), (16)

so

|〈Ψf |Ψi〉|2 =

kN
∏

k=k1

exp(
−p2

γ

2mNh̄ωk
) = exp(−

kN
∑

k=k1

p2
γ

2mNh̄ωk
). (17)

Notice that each of the N modes contributes a term of size 1/N to the exponent: if all of the frequencies ωk were the
same, the suppression would be just the exponent of a constant (−p2

γ/2mh̄ω) and hence definitely not zero.[20] The
only danger is in the low frequency modes: only for long-wavelength phonons (small k) where the frequency ω ∼ c|k|
is small do the terms in the sum get big.

To see if the long-wavelength phonons can make the overlap go to zero, we replace
∑

k with (V/8π3)
∫

k
d3k using

the uniform density of k points described above [7].

|〈Ψf |Ψi〉|2 ∼ exp(− V

8π3N

∫

p2
γ

2mh̄ωk
d3k) (18)

Since
∫

1/ωk d
3k) =

∫

4πk2/c|k| d|k| ∼
∫

kdk converges at small k, the integral is not divergent and the overlap is not
zero.

In part I, the big question was noticing that the overlap of the dead and live cat wavefunctions was zero, leading
to the philosophically controversial problem of quantum measurement. Here we find the overlap of the environment
before and after the decay is not zero. This has quite startling consequences.

1. The gamma ray is (often) emitted without any energy lost to recoil. Momentum is conserved nonetheless: the
momentum is absorbed by the crystal as a whole, whose recoil can be ignored.

2. A more complete calculation shows that the gamma ray can also be emitted without a Doppler shift due to
the thermal motion of the decaying atom. Because the atom is trapped in a cage by its neighbors, the thermal
velocities average to zero over the half-life of the nucleus. Similar effects are seen for the decay of gas particles
trapped in a box [8].
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3. The Mössbauer effect is an incredibly monochromatic source of light. A classic example is Fe57, which is formed
in an excited state by the decay of Co57. This excited state decays by emitting a gamma–ray with frequency
ν = E/h = 3.5 × 1018 Hz. The half–life of this excited state is τ log 2 = 10−7 seconds. The line width is
determined by τ ; thus fractional frequency shifts as small as 1/τν ∼ 10−12 can cause the line to stop overlapping.
(The full width at half height of this decay has been measured [9] to be 1.13×10−12.) Frauenfelder [2] describes
how his lab uses the Doppler effect to remove the resonant absorption, watching the peak vanish as the relative
velocity between two pieces of iron increases. Signs in his lab of ∞ = 1.3 cm/sec vividly illustrate how narrow
these lines are.

The Pound–Rebka experiment [9]

While we haven’t made an experiment which gets the decayed nucleus to interfere with a whole one, there are
amazing experiments [9] which interfere a nucleus which decays at time t with the same nucleus decaying after a later
time t′. The experiments use the gamma ray emitted by the excited state of Fe57 described above. The experiment
measured the gravitational red shift predicted by Einstein [10] in 1911.

t (1+gh/c )2

h

t

FIG. 4: The gravitational redshift experiment [9]. Einstein [10] says that clocks run more slowly deep in a gravitational
well. Equivalently, one can say that photons undergo a blue–shift, gaining energy as they fall. Pound and Rebka [9] used the
Mössbauer effect to measure this gravitational redshift. If the height L gets too large, the nucleus in the lower block of iron
can’t absorb the photon, because the photon frequency no longer matches that of the nucleus.

Pound and Rebka [9] put two blocks of iron at the top and bottom of a tower, a height L = 21 m apart (figure 4).
Imagine a nucleus in the top block decaying after a time t, emitting a photon which is absorbed by a nucleus in the
bottom block. If no phonons are emitted by either nucleus, there is no trace left after the absorbtion and emission of
the time t of the transition. This means, quantum mechanically, that the amplitudes of the wavefunction for the two
nuclei for different decay times t interfere coherently: they must be added together to arrive at the final wavefunction.
The contribution from different decay times t will add with different phases, because of the gravitational red shift.
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Let’s say that we’re sitting at the bottom of the tower. Einstein says that time at the top of the tower is passing
faster, by a rate increase of gL/c2, where c is the speed of light and g is the accelleration due to gravity. Thus the
nucleus in the top block of iron, which (were it not for gravitation) would have contributed a phase eiEt/h̄, contributes

an extra phase eiE(tgL/c2)/h̄. Since the proportion of decays falls off as (1/τ)e−t/τ , the final wavefunction and decay
probability can be computed[21]:

Ψ =
∫∞
0

(1/τ)e−t/τeiEt(gL/h̄c2)dt

= 1/(1 + iEgL/h̄c2) (19)

|Ψ|2 = 1/(1 + (EgL/h̄c2)2τ2).

That is, the absorbtion probability gets smaller as the height L grows. The incredible sharpness of the Mössbauer
line (τE/h = τν ∼ 1012) allowed them to measure this incredibly small frequency shift (gL/c2 ∼ 2 × 10−15).

Zero–phonon lines and electronic excitations

Electronic transitions for atoms in insulating solids also can occur without emitting phonons, producing what are
called zero–phonon lines [11]. During the transition, the atom typically changes size or alters the bond–lengths with
its neighbors, deforming the lattice. Recoil effects are not large at these energies, but the overlap integral of the
initial and deformed phonon ground states act to suppress the zero–phonon line, which one can compute [11, 12] in
a calculation very similar to 15. An important feature in these systems are vibrational sidebands: absorbtion from
transitions which simultaneously emit or absorb, for example, exactly one phonon.

To be found
FIG. 5: Zero–phonon line for the XXX excitation of the XXX atom in XXX. Notice the narrow peak in the center: these are
photons that were emitted without a single phonon decay. Notice the two broad peaks in emission above and below the central
peak: these correspond to transitions where a single phonon was absorbed or emitted, respectively. XXX Two phonons?

Atomic tunneling and the phonon overlap suppression

We’ve seen that the coupling to the environment can (perversely) lead to the sharpening of the energy emitted in
quantum decays. The environment can also have important consequences for quantum transitions that do not emit
radiation.

In glasses [14, 15] and doped crystals [16], there are atoms which undergo quantum transitions between two states,
forming tunneling centers. Lithium doped into KCl, for example, substitutes for one of the potassium ions, but
sits off–center: it’s so much smaller than potassium that it snuggles into a corner between three of the surrounding
six chlorine ions. An isolated lithium defect has six different corners it can fit into, and tunnels between them. The
tunneling matrix element ∆ is small, and the six states localized in the wells combine to form the six lowest eigenstates,
split by multiples of the tunnel splitting ∆. These tunneling states are observed at low temperatures T ∼ ∆/kB in
a variety of experiments [16]. Similar tunneling centers are observed in glasses, where typically one atom out of 106

will have a low enough barrier for tunneling and low enough asymmetry to be active below one degree Kelvin [14],
see figure 6. Many properties of glasses below 1K can be explained using the tunneling center model [15]; indeed,
doped crystals with many interacting tunneling centers also have glassy properties, for which quantitative theoretical
understanding extends up to higher temperatures [17].

Atomic tunneling: defects, glasses, instantons
Better analogy to cats.

III. Electrons: X-Ray Edges, Kondo, and Quantum Dots

Hi =
∑

εkc
†
kck (20)
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  Qo
FIG. 6: Double well potential for an atom in a solid. If the atom is in a symmetric environment, the tunneling asymmetry ǫ
can be zero. If the barrier V0 or the distance between wells Q0 is high, the ground state is then approximately a symmetric
superposition of local Gaussian ground state wavefunctions in the two wells. The first excited state is an antisymmetric
superposition of these same two states, and the energy separation between the two is the tunneling matrix element ∆.

FIG. 7: Ground state in double well coupled to one phonon. The contour lines show the potential V (Q, q) = V0(Q
2−(Q0/2)

2)2−
ǫQ/Q0 + 1/2mω2q2 + λqQ, with m = V0 = Q0 = ω = λ = 1, and ǫ = 0.3. The horizontal coordinate is Q, representing the
defect in a double well; the vertical coordinate is the phonon mode q; the axes are not to scale. The greyscale represents
schematically the probability density in the two wells for the ground state. One can think of the tunneling process as a defect
Q shifting, pulling the environment q with it, or as a collective tunneling of defect and environment between two states.

Hf =
∑

εkc
†
kck + Uc†0c0 (21)

εk ≈ ||k| − kF |h̄2kF /m (22)

c†0 =
∑

c†k/
√
N (23)
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FIG. 8: Atom tunneling onto and off of an STM tip [13].

Hf =
∑

εkc
†
kck + U/N

∑

k

∑

k′

c†kck′ (24)

|ψk,k′ 〉 ≈ {|ψi〉 + U/N |k, k′〉/(εk + εk′)} /(1 + (U/N)2/(εk + εk′)2)1/2 (25)

〈ψk,k′ |ψi〉 ≈
(

1 +

(

U

N

)2
1

h̄2(|k| − |k′|)2
m2

h̄2k2
F

)−1/2

(26)

log〈ψf |ψi〉 ≈
∑

k>kF ,k′<kF

−
(

U

N

)2
1

h̄2(|k| − |k′|)2
m2

2h̄2k2
F

(27)

log〈ψf |ψi〉 ≈ 1/2
(

V
4π3N

)2 ∫∞
0 4πk2

F dk
∫ 0

−kF
4πk2

F dk
′(mU/h̄kF )2 1

h̄2(k−k′)2

≈ 1/2
(

V kF mU
h̄2π2N

)2 ∫ kf

0
dκ

√
2κ/κ2

∼ 1/
√

2
(

3U
2EF

)2

log κ|kF

0 (28)

IV. The Kondo Problem and Macroscopic Quantum Coherence: Quenching Quantum Behavior

|GS〉 = (|ℓ〉 + |r〉)/
√

2 (29)

|ES〉 = (|ℓ〉 − |r〉)/
√

2 (30)

H |ψ〉 =

(

0 −∆
−∆ 0

)(

R
L

)

(31)

H =
∑

εkc
†
kck + U(B)c†0c0 (32)

〈ΨR|H |ΨL〉 = 〈ΨU |( 1 0 )

(

0 −∆
−∆ 0

)(

0
1

)

|Ψ0〉 (33)

= −∆〈ΨU |H |Ψ0〉 (34)

= · · · exp(−α
∫ kF

0 κ/κ2 dκ) (35)

= 0 ! (36)
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∆̃ = ∆exp(−
∫ ωc

∆̃/h̄ α/κ dκ) (37)

= ∆ e−α(log ωc−log(∆̃/h̄)) (38)

= ∆ (∆̃/h̄ωc)
α (39)

(40)

∆̃ = ∆ (∆/h̄ωc)
α/1−α (41)

exp(−βH) = exp(−β
∑

ij

SiSj/|i− j|2) (42)

exp(iS/h̄) = exp(−iα/h̄
∫

B(t)B(t′)/|t− t′|2) (43)
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