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Reading
Sakurai and Napolitano, sections 2.6, 3.4

3.1 Momentum-space propagator, Sakurai exercise (2.33).

3.2 Exponentials of matrices. (Math) ©3
In quantum mechanics, one often takes exponentials of operators. The exponential of
a matrix exp(M) can be computed using several different equivalent relations.

First, one can compute it as a power series:

exp(M) =
∞∑

n=0

Mn/n! (1)

Let’s take the exponential exp(−iφσ2/2), where σ2 = ( 0 −i
i 0 ) is the second Pauli matrix

(also known as σy). This is the definition of how spin 1/2 particles transform under
rotations.

(a) Note that σ2
2 = 1. Separate the infinite series into even and odd terms, and express

exp(−iφσ2/2) as a linear combination of the identity matrix 1 and the matrix σ2. In
your answer, note that a 360◦ rotation is not equal to the identity, but to minus the
identity!

Secondly, one can compute it as an infinite product of infinitesimal transformations:

exp(M) = lim
n→∞

exp(M/n)n = lim
n→∞

(1+M/n)n. (2)

This will be the basic trick we use to generate the path-integral formulation of quantum
mechanics. It is also the way we generate symmetry operations (like rotations) from
infinitesimal generators (like angular momentum).1 For example, in two dimensions
the angular momentum operator is J = i~ ( 0 1

−1 0 ).

(b) Show that a 2x2 rotation matrix by an angle θ/n, in the limit n→∞, can be written
as 1+ (Cθ/n)J . What is the constant C? Argue, without calculation, that the product
in eqn 2 must generate the finite-angle rotations.

1Continuous groups like the rotations are called Lie groups. The corresponding infinitesimal generators,
and their commutation relations, are called the Lie algebra for the group.



Finally, most matrices which arise in quantum mechanics (symmetric matrices, Hermi-
tian matrices, and the more general category of normal matrices) can be diagonalized

by a unitary change of basis: D =
(

λ1 0 ···
0 λ2 ···
0 0 ···

)
= U †MU , with U † = (UT )∗ = U−1.

Thus Mn = (UDU †)M = UD(U †U)D · · ·DU † = UDnU †. For these matrices, we can
compute the exponential of a matrix by doing a coordinate change to the basis that
diagonalizes it:

exp(M) =
∞∑

n=0

Mn/n! =
∞∑

n=0

UDnU †/n! = U

(
∞∑

n=0

Dn/n!

)
U † = U

(
eλ1 0 ···
0 eλ2 ···
0 0 ···

)
U † (3)

Let’s apply this to the time evolution operator exp(−iHt/~) for the Hamiltonian we
studied in the Eigen exercise (3.1): H =

(
0 −4
−4 6

)
.

(c) Apply the relation eqn 3 to calculate the 2x2 time evolution operator exp(−iHt/~)
for our Hamiltonian. Apply the resulting time evolution operator to the state ψ(0) = ( 1

0 )
to calculate ψ(t). Also write the time evolved state as

∑
n exp(−iEnt/~)|n〉〈n|ψ〉, where

|n〉 are the eigenstates of H. Do the two methods agree?

3.3 Propagators to Path Integrals. (PathIntegrals) ©3
In class, we calculated the propagator for free particles, which Sakurai also calculates
(eqn 2.6.16):

K(x′, t;x0, t0) =

√
m

2πi~(t− t0)
exp

[
im(x′ − x0)

2

2~(t− t0)

]
. (4)

Sakurai also gives the propagator for the simple harmonic oscillator (eqn 2.6.18):

K(x′, t;x0, t0) =

√
mω

2πi~ sin[ω(t− t0)]
(5)

× exp

[{
imω

2~ sin[ω(t− t0)]

}[
(x′2 + x2

0) cos[ω(t− t0)]− 2x′x0

]]
.

In deriving the path integral, Feynman approximates the short-time propagator in a
potential V (x) using the ‘trapezoidal’ rule:

K(x0 + ∆x, t0 + ∆t;x0, t0) = N∆t exp

[
i∆t

~
{

1/2m(∆x/∆t)2 − V (x0)
}]

, (6)

where the expression in the curly brackets is the straight-line approximation to the
Lagrangian 1/2mẋ

2 − V (x). Check Feynman’s approximation: is it correct to first order
in ∆t for the free particle and the simple harmonic osillator? For simplicity, let’s ignore
the prefactors (coming from the normalizations), and focus on the terms inside the
exponentials.

Taking t = t0 + ∆t and x′ = x0 + ẋ∆t, expand to first order in ∆t the terms in the
exponential for the free particle propagator (eqn 4) and the simple harmonic oscillator



(eqn 5). Do they agree with Feynman’s formula? (Hint: For the simple harmonic
oscillator, the first term is proportional to 1/∆t, so you’ll need to keep the second term
to second order in ∆t.)

3.4 Spin density matrix.2 (Quantum) ©3
Let the Hamiltonian for a spin be

H = −~
2
B · ~σ, (7)

where ~σ = (σx, σy, σz) are the three Pauli spin matrices, and B may be interpreted
as a magnetic field, in units where the gyromagnetic ratio is unity. Remember that
σiσj − σjσi = 2iεijkσk. Show that any 2× 2 density matrix may be written in the form

ρ =
1

2
(1 + n · ~σ). (8)

Show that the equations of motion for the density matrix i~∂ρ/∂t = [H,ρ] can be
written as dp/dt = −B× p.

3.5 Density Matrices and Statistical Mechanics. (Quantum Stat Mech) ©3
Quantum tunneling of atoms dominates the low temperature properties of glasses (as
discovered at Cornell by Robert Pohl and his Master’s student Zeller). Defects in
crystals also have important quantum tunneling properties; indeed, tunneling defects
in alkali halides were a major field of study here in the 60’s and 70’s (Pohl, Sievers,
Silsbee, Krumhansl, . . . ). For example, if you substitute a (small) lithium atom for
a (larger) potassium in KCl, it lowers its energy by sitting off-center, nestled into a
corner of the cube formed by its six Cl neighbors. But quantum mechanically, it has
six such off-center positions, and can tunnel between them.

Here we’ll study the simpler case of an atom with two equilibrium positions. Let the
Hamiltonian for an atom in a symmetric double well be approximated by

H0 =

(
0 −∆
−∆ 0

)
(9)

where the basis states |L〉 = ( 1
0 ) and |R〉 = ( 0

1 ) are localized in the left and right wells,
and where ∆ > 0 is the tunneling matrix element (calculated, for example, by WKB
or instantons). This two-level system approximation is the starting point for many
theories of defect tunneling and glasses.

(a) Find the eigenvalues and eigenvectors of H0.

At a temperature T , quantum statistical mechanics tells us that the density matrix is

ρ = exp(−H/kBT )/Tr(exp(−H/kBT )) (10)

2Adapted from exam question by Bert Halperin, Harvard University, 1976.



(b) Find the density matrix ρ(T ) for H0. (Hint: There are lots of different ways
to exponentiate the matrix. Your final answer should be written without any infinite
sums, and the diagonal elements should make sense.)

(c) Find the expectation value for the energy U(T ) = 〈H〉 by taking an appropriate
trace involving ρ. Find the specific heat c(T ) = dU/dT .

Your formula should give a peak in the specific heat near kBT = ∆. This is called a
Schottky peak, and is often a clear signal of a tunneling defect.

Statistical mechanics is often formulated in the energy basis. Every energy eigenstate
|Eα〉 is weighted by a Boltzmann factor exp(−Eα/kBT ), so the probability of being in
that state is pα = exp(−Eα/kBT )/Z.

ρ =
∑

α

pα|Eα〉〈Eα|. (11)

Here the partition function Z =
∑

α exp(−Eα/kBT ) is seen as the normalization factor
for the Boltzmann sum.

(d) Calculate the expectation value for the energy by summing over the eigenstates.
Check your answer from part (c).

Why bother with density matrices, when eigenstates will do? In many cases, the
eigenstate basis isn’t natural. For example, when our double-well atom is put in an
electric field or under strain, the couplings are simple in the position basis, and quite
ugly and unnatural in the energy eigenstates. For example, if the left and right wells
are separated by a distance Q and the ion has charge e, the total Hamiltonian might
be H = H0 +HI , with an interaction Hamiltonian

HI = eEX = eE

(
−Q/2 0

0 Q/2

)
. (12)

(d) Write HI in the energy basis. (Hint: The answer isn’t so messy, but only because
it’s a symmetric double well.)

3.6 Does entropy increase in quantum systems?. (Mathematics, Quantum) ©3
One can show (Exercise (5.7) in my text, ‘Entropy, Order Parameters, and Complex-
ity’) that in classical Hamiltonian systems the non-equilibrium entropy Snonequil =
−kB

∫
ρ log ρ is constant in a classical mechanical Hamiltonian system. Here you will

show that in the microscopic evolution of an isolated quantum system, the entropy is
also time independent, even for general, time-dependent density matrices ρ(t).

Using the evolution law ∂ρ/∂t = [H, ρ]/(i~), prove that S = −Tr (ρ log ρ) is time
independent, where ρ is any density matrix. (Hint: Go to an orthonormal basis ψi

which diagonalizes ρ. Show that ψi(t) is also orthonormal, and take the trace in that
basis. Use the cyclic invariance of the trace.)


