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4.1 Rotating Fermions. (Group theory) ©3
In this exercise, we’ll explore the geometry of the space of rotations.

Spin 1/2 fermions transform upon rotations under SU(2), the unitary 2×2 matrices
with determinant one. Vectors transform under SO(3), the ordinary 3 × 3 rotation
matrices you know of.

Sakurai argues that a general SU(2) matrix U =
(

a b
−b∗ a∗

)
with |a|2 + |b|2 = 1. Viewing

{Re(a), Im(a),Re(b), Im(b)} as a vector in four dimensions, SU(2) then geometrically
is the unit sphere S3 in R4.

Remember that for every matrix R in SO(3), there are two unitary matrices U and −U
corresponding to the same physical rotation. The matrix −U has coordinates (−a,−b)
– it is the antipodal point on S3, exactly on the opposite side of the sphere. So SO(3)
is geometrically the unit sphere with antipodal points identified. This is called (for
obscure reasons) the projective plane, RP 3.

Feynman’s plate (in Feynman’s plate trick) as it rotates 360◦ travels in rotation space
from one orientation to its antipode. While I’m not sure anyone has figured out whether
arms, shoulders, and elbows duplicate the properties of fermions under rotations, the
plate motion illustrates the possibility of a minus sign.

But we can calculate this trajectory rather neatly by mapping the rotations not to the
unit sphere, but to the space R3 of three-dimensional vectors. (Just as the 2-sphere
S2 can be projected onto the plane, with the north pole going to infinity, so can the
3-sphere S3 be projected onto R3.) Remember the axis-angle variables, where a rotation
of angle φ about an axis n̂ is given by

exp(−iS · n̂φ/~) = exp(−iσ · n̂φ/2) = exp(−iJ · n̂φ/~) (1)

where the middle formula works for SU(2) (where S = ~σ/2, because the particles
have spin 1/2) and the last formula is appropriate for SO(3).1 We figure n will be the

1The factor of two is there for SU(2) because the spin is 1/2. For SO(3), infinitesimal generators are
antisymmetric matrices, so S(i)

jk = J(i)
jk = i~εijk in the xyz basis; in the usual quantum basis mz = (−1, 0, 1)

the formula will be different.



direction of the vector in R3 corresponding to the rotation, but how will the length
depend on φ? Since all rotations by 360◦ are the same, it makes sense to make the
length of the vector go to infinity as φ→ 360◦. We thus define the Modified Rodrigues
coordinates for a rotation to be the vector p = n̂ tan(φ/4).

(a) Fermions, when rotated by 360◦, develop a phase change of exp(iπ) = −1 (as dis-
cussed in Sakurai & Napolitano p. 165, and as we illustrated with Feynman’s plate
trick). Give the trajectory of the modified Rodrigues coordinate for the fermion’s ro-
tation as the plate is rotated 720◦ about the axis n̂ = ẑ. (We want the continuous
trajectory on the sphere S3, perhaps which passes through the point at ∞. Hint: The
trajectory is already defined by the modified Rodrigues coordinate: just describe it.)

(b) For a general Rodrigues point p parameterizing a rotation in SO(3), what antipodal
point p′ corresponds to the same rotation? (Hint: A rotation by φ and a rotation by
φ+ 2π should be identified.)

4.2 Quantum dice.2 (Quantum) ©2
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Fig. 1 Quantum dice. Rolling two dice. In Bosons, one accepts only the rolls in the shaded
squares, with equal probability 1/6. In Fermions, one accepts only the rolls in the darkly-
shaded squares (not including the diagonal from lower left to upper right), with probability
1/3.

You are given several unusual ‘three-sided’ dice which, when rolled, show either one,
two, or three spots. There are three games played with these dice: Distinguishable,
Bosons, and Fermions. In each turn in these games, the player rolls one die at a time,
starting over if required by the rules, until a legal combination occurs. In Distinguish-
able, all rolls are legal. In Bosons, a roll is legal only if the new number is larger or
equal to the preceding number. In Fermions, a roll is legal only if the new number is
strictly larger than the preceding number. See Fig. 1 for a table of possibilities after
rolling two dice.

2This exercise was developed in collaboration with Sarah Shandera.



Our dice rules are the same ones that govern the quantum statistics of identical parti-
cles.

(a) Presume the dice are fair: each of the three numbers of dots shows up 1/3 of the
time. For a legal turn rolling a die twice in Bosons, what is the probability ρ(4) of
rolling a 4? Similarly, among the legal Fermion turns rolling two dice, what is the
probability ρ(4)?

(b) For a legal turn rolling three ‘three-sided’ dice in Fermions, what is the probability
ρ(6) of rolling a 6? (Hint: There is a Fermi exclusion principle: when playing
Fermions, no two dice can have the same number of dots showing.) Electrons are
fermions; no two electrons can be in exactly the same state.

When rolling two dice in Bosons, there are six different legal turns (11), (12), (13), . . . ,
(33); half of them are doubles (both numbers equal), while for plain old Distinguishable
turns only one-third would be doubles3; the probability of getting doubles is enhanced
by 1.5 times in two-roll Bosons. When rolling three dice in Bosons, there are ten
different legal turns (111), (112), (113), . . . , (333). When rolling M dice each with N
sides in Bosons, one can show that there are(

N +M − 1

M

)
=

(N +M − 1)!

M ! (N − 1)!

legal turns.

(c) In a turn of three rolls, what is the factor by which the probability of getting triples
in Bosons is enhanced over that in Distinguishable? In a turn of M rolls, what is the
enhancement factor for generating an M-tuple (all rolls having the same number of dots
showing)?

Notice that the states of the dice tend to cluster together in Bosons. Examples of real
bosons clustering into the same state include Bose condensation and lasers (Exercise 3).

4.3 Bosons are gregarious: superfluids and lasers. (Quantum, Optics, Atomic
physics) ©3
Adding a particle to a Bose condensate. Suppose we have a non-interacting system of
bosonic atoms in a box with single-particle eigenstates ψn. Suppose the system begins
with all N bosons in a state ψ0 (a “Bose condensed state”), so

Ψ
[0]
N (r1, . . . , rN) = ψ0(r1) · · ·ψ0(rN). (2)

3For Fermions, of course, there are no doubles.



Suppose a new particle is gently injected into the system, into an equal superposition
of the M lowest single-particle states.4 That is, if it were injected into an empty box,
it would start in state

φ(rN+1) =
1√
M

(
ψ0(rN+1) + ψ1(rN+1)

+ . . .+ ψM−1(rN+1)
)
. (3)

The state Φ(r1, . . . rN+1) after the particle is inserted into the non-interacting Bose

condensate is given by symmetrizing the product function Ψ
[0]
N (r1, . . . , rN)φ(rN+1)

Ψsym(r1, r2, . . . , rN) = (normalization)
∑

P

Φ(rP1 , rP2 , . . . , rPN
). (4)

(a) Calculate the symmetrized initial state of the system with the injected particle. Show
that the ratio of the probability that the new boson enters the ground state ψ0 is en-
hanced over that of its entering a particular empty state5 (ψm for 0 < m < M) by a
factor N + 1. (Hint: First do it for N = 1.)

So, if a macroscopic number of bosons are in one single-particle eigenstate, a new parti-
cle will be much more likely to add itself to this state than to any of the microscopically
populated states.

Notice that nothing in your analysis depended on ψ0 being the lowest energy state.
If we started with a macroscopic number of particles in a single-particle state with
wavevector k (that is, a superfluid with a supercurrent in direction k), new added
particles, or particles scattered by inhomogeneities, will preferentially enter into that
state. This is an alternative approach to understanding the persistence of supercurrents,
complementary to the topological approach (Exercise 2.5).

Adding a photon to a laser beam. This ‘chummy’ behavior between bosons is also the
principle behind lasers.6 A laser has N photons in a particular mode. An atom in an
excited state emits a photon. The photon it emits will prefer to join the laser beam than
to go off into one of its other available modes by a factor N +1. Here the N represents
stimulated emission, where the existing electromagnetic field pulls out the energy from
the excited atom, and the +1 represents spontaneous emission which occurs even in
the absence of existing photons.

4For free particles in a cubical box of volume V , injecting a particle at the origin φ(r) = δ(r) would
be a superposition of all plane-wave states of equal weight, δ(r) = (1/V )

∑
k eik·x. (In second-quantized

notation, a†(x = 0) = (1/V )
∑

k a
†
k.) We ‘gently’ add a particle at the origin by restricting this sum to

low-energy states. This is how quantum tunneling into condensed states (say, in Josephson junctions or
scanning tunneling microscopes) is usually modeled.

5More precisely, calculate the ratio of the probability of being in the many-body ground state (all particles
in state ψ0) to the probability of injecting into the many-body state with one electron in the state ψm and
the rest in ψ0.

6Laser is an acronym for ‘light amplification by the stimulated emission of radiation’.



Imagine a single atom in a state with excitation energy energy E and decay rate Γ,
in a cubical box of volume V with periodic boundary conditions for the photons. By
the energy-time uncertainty principle, 〈∆E∆t〉 ≥ ~/2, the energy of the atom will
be uncertain by an amount ∆E ∝ ~Γ. Assume for simplicity that, in a cubical box
without pre-existing photons, the atom would decay at an equal rate into any mode in
the range E − ~Γ/2 < ~ω < E + ~Γ/2.

(b) Assuming a large box and a small decay rate Γ, find a formula for the number of
modes M per unit volume V per unit energy E in the box (the density of states). How
many states are competing for the photon emitted from our atom, for a laser with wave-
length λ = 619 nm and line-width Γ = 104 rad/s. (Hint: The eigenstates are plane
waves, with two polarizations per wavevector. Using periodic boundary conditions, one
can derive the density of states. This is a standard calculation, so you can look up the
answer to check it.)

Assume the laser is already in operation, so there are N photons in the volume V of
the lasing material, all in one plane-wave state (a single-mode laser).

(c) Using your result from part (a), give a formula for the number of photons per unit
volume N/V there must be in the lasing mode for the atom to have 50% likelihood of
emitting into that mode.

The main task in setting up a laser is providing a population of excited atoms. Amplifi-
cation can occur if there is a population inversion, where the number of excited atoms is
larger than the number of atoms in the lower energy state (definitely a non-equilibrium
condition). This is made possible by pumping atoms into the excited state by using
one or two other single-particle eigenstates.

4.4 Phonons on a string. (Quantum, Condensed matter) ©3
A continuum string of length L with mass per unit length µ under tension τ has a
vertical, transverse displacement u(x, t). The kinetic energy density is (µ/2)(∂u/∂t)2

and the potential energy density is (τ/2)(∂u/∂x)2. The string has fixed boundary
conditions at x = 0 and x = L.

Write the kinetic energy and the potential energy in new variables, changing from u(x, t)
to normal modes qk(t) with u(x, t) =

∑
n qkn(t) sin(knx), kn = nπ/L. Show in these vari-

ables that the system is a sum of decoupled harmonic oscillators. Calculate the density
of normal modes per unit frequency g(ω) for a long string L. Calculate the specific heat
of the string c(T ) per unit length in the limit L→∞, treating the oscillators quantum
mechanically. (You can find the specific heat of one harmonic oscillator in section 7.2
of my book ‘Entropy, Order Parameters, and Complexity’.) What is the specific heat
of the classical string? (Hint: The Hamiltonian is the integral of the energy density.)



Almost the same calculation, in three dimensions, gives the low-temperature specific
heat of crystals.

4.5 Anyons. (Statistics) ©3

Frank Wilczek, “Quantum mechanics of fractional-spin particles”, Phys. Rev. Lett.
49, 957 (1982).

Steven Kivelson, Dung-Hai Lee, and Shou-Cheng Zhang, “Electrons in Flatland”,
Scientific American, March 1996.

In quantum mechanics, identical particles are truly indistinguishable (Fig. 2). This
means that the wavefunction for these particles must return to itself, up to an overall
phase, when the particles are permuted:

Ψ(r1, r2, · · · ) = exp(iχ)Ψ(r2, r1, · · · ). (5)

where · · · represents potentially many other identical particles.

We can illustrate this with a peek at an advanced topic mixing quantum field theory
and relativity. Here is a scattering event of a photon off an electron, viewed in two
reference frames; time is vertical, a spatial coordinate is horizontal. On the left we see
two ‘different’ electrons, one which is created along with an anti-electron or positron e+,
and the other which later annihilates the positron. On the right we see the same event
viewed in a different reference frame; here there is only one electron, which scatters
two photons. (The electron is virtual, moving faster than light, between the collisions;
this is allowed in intermediate states for quantum transitions.) The two electrons on
the left are not only indistinguishable, they are the same particle! The antiparticle is
also the electron, traveling backward in time.7

7This idea is due to Feynman’s thesis advisor, John Archibald Wheeler. As Feynman quotes in his Nobel
lecture, I received a telephone call one day at the graduate college at Princeton from Professor Wheeler, in
which he said, “Feynman, I know why all electrons have the same charge and the same mass.” “Why?”
“Because, they are all the same electron!” And, then he explained on the telephone, “suppose that the world
lines which we were ordinarily considering before in time and space - instead of only going up in time were
a tremendous knot, and then, when we cut through the knot, by the plane corresponding to a fixed time, we
would see many, many world lines and that would represent many electrons, except for one thing. If in one
section this is an ordinary electron world line, in the section in which it reversed itself and is coming back
from the future we have the wrong sign to the proper time - to the proper four velocities - and that’s equivalent
to changing the sign of the charge, and, therefore, that part of a path would act like a positron.”
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Fig. 2 Feynman diagram: identical particles.

In three dimensions, χ must be either zero or π, corresponding to bosons and fermions.
In two dimensions, however, χ can be anything: anyons are possible! Let’s see how this
is possible.

In a two-dimensional system, consider changing from coordinates r1, r2 to the center-
of-mass vector R = (r1 + r2)/2, the distance between the particles r = |r2 − r1|, and
the angle φ of the vector between the particles with respect to the x̂ axis. Now consider
permuting the two particles counter-clockwise around one another, by increasing φ at
fixed r. When φ = 180◦ ≡ π, the particles have exchanged positions, leading to a
boundary condition on the wavefunction

Ψ(R, r, φ, · · · ) = exp(iχ)Ψ(R, r, φ+ π, · · · ). (6)

Permuting them counter-clockwise (backward along the same path) must then8 give
Ψ(R, r, φ, · · · ) = exp(−iχ)Ψ(R, r, φ− π, · · · ). This in general makes for a many-valued
wavefunction (similar to Riemann sheets for complex analytic functions).

Why can’t we get a general χ in three dimensions?

(a) Show, in three dimensions, that exp(iχ) = ±1, by arguing that a counter-clockwise
rotation and a clockwise rotation must give the same phase. (Hint: The phase change
between φ and φ+ π cannot change as we wiggle the path taken to swap the particles,
unless the particles hit one another during the path. Try rotating the counter-clockwise
path into the third dimension: can you smoothly change it to clockwise? What does
that imply about exp(iχ)?)

8The phase of the wave-function doesn’t have to be the same for the swapped particles, but the gradient
of the phase of the wavefunction is a physical quantity, so it must be minus for the counter-clockwise path
what it was for the clockwise path.



Fig. 3 Braiding of paths in two dimensions. In two dimensions, one can distinguish
swapping clockwise from counter-clockwise. Particle statistics are determined by representa-
tions of the Braid group, rather than the permutation group.

Figure 3 illustrates how in two dimensions rotations by π and −π are distinguishable;
the trajectories form ‘braids’ that wrap around one another in different ways. You can’t
change from a counter-clockwise braid to a clockwise braid without the braids crossing
(and hence the particles colliding).

An angular boundary condition multiplying by a phase should seem familiar: it’s quite
similar to that of the Bohm-Aharonov effect we studied in exercise 2.4. Indeed, we
can implement fractional statistics by producing composite particles, by threading a
magnetic flux tube of strength Φ through the center of each 2D boson, pointing out of
the plane.

(b) Remind yourself of the Bohm-Aharonov phase incurred by a particle of charge e
encircling counter-clockwise a tube of magnetic flux Φ. If a composite particle of charge
e and flux Φ encircles another identical composite particle, what will the net Bohm-
Aharonov phase be? (Hint: You can view the moving particle as being in a fixed
magnetic field of all the other particles. The moving particle doesn’t feel its own flux.)

(c) Argue that the phase change exp(iχ) upon swapping two particles is exactly half
that found when one particle encircles the other. How much flux is needed to turn a
boson into an anyon with phase exp(iχ)? (Hint: The phase change can’t depend upon
the precise path, so long as it braids the same way. It’s homotopically invariant, see
chapter 9 of “Entropy, Order Parameters, and Complexity”.)

Anyons are important in the quantum Hall effect. What is the quantum Hall effect?
At low temperatures, a two dimensional electron gas in a perpendicular magnetic field
exhibits a Hall conductance that is quantized, when the filling fraction ν (electrons per
unit flux in units of Φ0) passes near integer and rational values.

Approximate the quantum Hall system as a bunch of composite particles made up of
electrons bound to flux tubes of strength Φ0/ν. As a perturbation, we can imagine
later relaxin the binding and allow the field to spread uniformly.9

9This is not nearly as crazy as modeling metals and semiconductors as non-interacting electrons, and
adding the electron interactions later. We do that all the time – ‘electons and holes’ in solid-state physics,
’1s, 2s, 2p’ electrons in multi-electron atoms, all have obvious meanings only if we ignore the interactions.
Both the composite particles and the non-interacting electron model are examples of how we use adiabatic
continuity – you find a simple model you can solve, that can be related to the true model by turning on an
interaction.



(d) Composite bosons and the integer quantum Hall effect. At filling fraction
ν = 1 (the ‘integer’ quantum Hall state), what are the effective statistics of the composite
particle? Does it make sense that the (ordinary) resistance in the quantum Hall state
goes to zero?

• The excitations in the fractional quantum Hall effect are anyons with fractional
charge. (The ν = 1/3 state has excitations of charge e/3, like quarks, and their
wavefunctions gain a phase exp(iπ/3) when excitations are swapped.)

• It is conjectured that, at some filling fractions, the quasiparticles in the fractional
quantum Hall effect have non-abelian statistics, which could become useful for
quantum computation.

• The composite particle picture is a centeral tool both conceptually and in calcu-
lations for this field.

4.6 Superfluids: density matrices and ODLRO part 1. (Condensed matter, Quan-
tum) ©5
(Optional: Extra credit.)

This exercise develops the quantum theory of the order parameters for superfluids and
superconductors, following a classic presentation by Anderson (see, e.g. “Considera-
tions on the flow of superfluid helium”, Rev. Mod. Phys. 38, 298). In this part of the
exercise, we introduce the reduced density matrix and off-diagonal long-range order
The exercise is challenging; it introduces creation and annihilation operators for fields,
it involves technically challenging calculations, and the concepts it introduces are deep
and subtle. . .

Density matrices. We saw in Exercise (2.5) that a Bose-condensed ideal gas can be
described in terms of a complex number ψ(r) representing the eigenstate which is
macroscopically occupied. For superfluid helium, the atoms are in a strongly-interacting
liquid state when it goes superfluid. We can define the order parameter ψ(r) even for
an interacting system using the reduced density matrix.

Suppose our system is in a mixture of many-body states Ψα with probabilities Pα. The
full density matrix in the position representation, you will remember, is

ρ̂(r′1, . . . ,r
′
N , r1, . . . , rN)

=
∑

α

PαΨ∗(r′1, . . . , r
′
N)Ψ(r1, . . . , rN). (7)

(Properly speaking, these are the matrix elements of the density matrix in the position
representation; rows are labeled by {r′i}, columns are labeled by {rj}.) The reduced
density matrix ρ̂(r′, r) (which I will call the density matrix hereafter) is given by setting



r′j = rj for all but one of the particles and integrating over all possible positions,
multiplying by N :

ρ̂2(r
′, r) =

N

∫
d3r2 · · · d3rN

× ρ̂(r′, r2 . . . , rN , r, r2, . . . , rN). (8)

(For our purposes, the fact that it is called a matrix is not important; think of ρ̂2 as a
function of two variables.)

(a) What does the reduced density matrix ρ2(r
′, r) look like for a zero-temperature Bose

condensate of non-interacting particles, condensed into a normalized single-particle
state ζ(r)? (That is, Ψ(r1, . . . , rN) =

∏N
m=1 ζ(rm).)

An alternative, elegant formulation for this density matrix is to use second-quantized
creation and annihilation operators instead of the many-body wavefunctions. These
operators a†(r) and a(r) add and remove a boson at a specific place in space. They
obey the commutation relations

[a(r), a†(r′)] = δ(r− r′),

[a(r), a(r′)] = [a†(r), a†(r′)] = 0;
(9)

since the vacuum has no particles, we also know

a(r)|0〉 = 0,

〈0|a†(r) = 0.
(10)

We define the ket wavefunction as

|Ψ〉 = (1/
√
N !)

∫
d3r1 · · · d3rN

×Ψ(r1, . . . , rN)a†(r1) . . . a
†(rN)|0〉. (11)

(b) Show that the ket is normalized if the symmetric Bose wavefunction Ψ is normal-
ized. (Hint: Use eqn 9 to pull the as to the right through the a†s in eqn 11; you should
get a sum of N ! terms, each a product of N δ-functions, setting different permutations
of r1 · · · rN equal to r′1 · · · r′N .) Show that 〈Ψ|a†(r′)a(r)|Ψ〉, the overlap of a(r)|Ψ〉 with
a(r′)|Ψ〉 for the pure state |Ψ〉 gives the the reduced density matrix 8.

Since this is true of all pure states, it is true of mixtures of pure states as well; hence
the reduced density matrix is the same as the expectation value 〈a†(r′)a(r)〉.
In a non-degenerate Bose gas, in a system with Maxwell–Boltzmann statistics, or in
a Fermi system, one can calculate ρ̂2(r

′, r) and show that it rapidly goes to zero as



|r′ − r| → ∞. This makes sense; in a big system, a(r)|Ψ(r)〉 leaves a state with a
missing particle localized around r, which will have no overlap with a(r′)|Ψ〉 which has
a missing particle at the distant place r′.

ODLRO and the superfluid order parameter. This is no longer true in superfluids; just
as in the condensed Bose gas of part (a), interacting, finite-temperature superfluids
have a reduced density matrix with off-diagonal long-range order (ODLRO);

ρ̂2(r
′, r) → ψ∗(r′)ψ(r) as |r′ − r| → ∞. (12)

It is called long-range order because there are correlations between distant points; it
is called off-diagonal because the diagonal of this density matrix in position space is
r = r′. The order parameter for the superfluid is ψ(r), describing the long-range piece
of this correlation.

(c) What is ψ(r) for the non-interacting Bose condensate of part (a), in terms of the
condensate wavefunction ζ(r)?

This reduced density matrix is analogous in many ways to the density–density corre-
lation function for gases C(r′, r) = 〈ρ(r′)ρ(r)〉 and the correlation function for magne-
tization 〈M(r′)M(r)〉 (Chapter 10 of “Entropy, Order Parameters, and Complexity”).
The fact that ρ̂2 is long range is analogous to the fact that 〈M(r′)M(r)〉 ∼ 〈M〉2 as
r′− r →∞; the long-range order in the direction of magnetization is the analog of the
long-range phase relationship in superfluids.


