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Reading
Sakurai and Napolitano, chapter 4 and 7 (chapter 6, Sakurai red ‘Revised’ edition)

5.1 A peculiar unitary matrix. Sakurai & Napolitano, problem 3.3, “Consider the 2×2
matrix defined by. . . ” (This is problem 3.2 in the older red ‘Revised edition’.) (Hint:
part (a) can be done without writing out the components. For part (b), I first did it
in Mathematica, and then figured out that one can find the answer by rotating the
coordinate system until a ∝ ẑ.)

5.2 Spin-1 Hamiltonian. Sakurai & Napolitano, problem 4.12, red version also 4.12,
“The Hamiltonian for a spin 1 system. . . ”. Omit the questions about time-reversal
invariance. (Hint: I needed to construct Sy and Sz from J±.)

5.3 Harmonic Fermi Sea. Sakurai & Napolitano, problem 7.2, red version 6.1, “N
identical spin 1/2 . . . ”

5.4 Identical spin-1 addition. Sakurai & Napolitano, problem 7.3, red version 6.2, “It
is obvious. . . ”

5.5 Triangle of spinless bosons. Sakurai & Napolitano, problem 7.5, red version 6.4,
“Three spin 0 particles. . . ”

5.6 Anticommutation and number. (Corrected version of Sakurai & Napolitano, prob-
lem 7.7.) Show that, for an operator a that, with its adjoint, obeys the anticommutation
relations {a, a} = {a†, a†} = 0 and {a, a†} = aa† + a†a = 1, that the operator N = a†a
only has eigenstates with the eigenvalues 0 and 1.

5.7 Lithium ground state symmetry. (Quantum) ©3
A simple model for heavier atoms, that’s surprisingly useful, is to ignore the interactions
between electrons (the independent electron approximation).1

HZ =
Z∑

i=1

p2
i /2m− kεZe

2/ri (1)

1Here kε = 1 in CGS units, and kε = 1/(4πε0) in SI units. We are ignoring the slight shift in effective
masses due to the motion of the nucleus.



Remember that the eigenstates of a single electron bound to a nucleus with charge Z
are the hydrogen levels (ψZ

n = ψZ
1s, ψ

Z
2s, ψ

Z
2p, . . . ), except shrunken and shifted upward

in binding energy (EZ more negative):

HZψZ
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EZ = λEE
H (2)

(a) By what factor λr do the wavefunctions shrink? By what factor λE do the energies
grow? (Hint: Dimensional arguments are preferred over looking up the formulas.)

In the independent electron approximation, the many-body electron eigenstates are cre-
ated from products of single-electron eigenstates. The Pauli exclusion principle (which
appears only useful in this independent electron approximation) says that exactly two
electrons can fill each of the single-particle states.

(b) Ignoring identical particle statistics, show that a product wavefunction

Ψ(r1, r2, r3, . . . ) = ψZ
n1

(r1)ψ
Z
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(r2)ψ
Z
n3

(r3) . . . (3)

has energy E =
∑

iE
Z
ni

.

The effect of the electron-electron repulsion in principle completely destroys this prod-
uct structure. But for ground-state and excited-state quantum numbers, the language
of filling independent electron orbitals is quite useful.2 However, the energies of these
states are strongly corrected by the interactions between the other electrons.

(c) Consider the 2s and 2p states of an atom with a filled 1s shell (one electron of each
spin in 1s states). Which state feels a stronger Coulomb attraction from the nucleus?
Argue heuristically that the 2s state will generally have lower (more negative) energy
and fill first.

Let’s check something I asserted, somewhat tentatively, in lecture. There I said that,
for atoms with little spin-orbit coupling, the ground state wavefunction can be factored
into a spatial and a spin piece:

Ψ(r1, s1; r2, s2; r3, s3; . . . )
?
= ψ(r1, r2, r3 . . . )χ(s1, s2, s3 . . . ) (4)

We’ll check this in the first non-trivial case – the lithium atom ground state, in the
independent electron approximation. From part (c), we know that two electrons should

2The excited states of an atom aren’t energy eigenstates, they are resonances, with a finite lifetime. If you
think of starting with the independent electron eigenstates and gradually turning on the Coulomb interaction
and the interaction with photons, the true ground state and the resonances are adiabatic continuations of
the single-particle product eigenstates – inheriting their quantum numbers.



occupy the 1s orbital, and one electron should occupy the 2s orbital. The two spins in
the 1s orbital must be antiparallel; let us assume the third spin is pointing up ↑3:

Ψ0(r1, s1; r2, s2; r3, s3) = ψLi
1s(r1)ψ

Li
1s(r2)ψ

Li
2s(r3) ↑1↓2↑3 . (5)

But this combination is not antisymmetric under permutations of the electrons.

(d) Antisymmetrize Ψ0 with respect to electrons 1 and 2. Show that the resulting state
is a singlet with respect to these two electrons. Antisymmetrize Ψ0 with respect to all
three electrons (a sum of six terms). Does it go to zero (in some obvious way)? Can it
be written as a product as in eqn 4?

5.8 Three particles in a box. (Quantum) ©3
(Adapted from Sakurai, p. 4.1)

Consider free, noninteracting particles of mass m in a one-dimensional box of length L
with infinitely high walls.

(a) What are the lowest three energies of the single-particle energy eigenstates?

If the particles are assumed non-interacting, the quantum eigenstates can be written
as suitably symmetrized or antisymmetrized single-particle eigenstates. One can use a
level diagram, such as in Fig. 1, to denote the fillings of the single particle states for
each many-electron eigenstate.

Bosons

Fermions

Distinguished

Fig. 1 Level diagram, showing one of the ground states for each of the three cases.

(b) If three distinguishable spin-1/2 particles of the same mass are added to the box,
what is the energy of the three-particle ground state? What is the degeneracy of the
ground state? What is the first three-particle energy eigenvalue above the ground state?
Its degeneracy? The degeneracy and energy of the second excited state? Draw a level
diagram for one of the first excited states, and one of the second excited states (the
ground state being shown on the left in Fig. 1).



(c) The same as part (b), but for three identical spin-1/2 fermions.

(d) The same as part (b), but for three identical spin-zero bosons.

5.9 Superfluids part II: ODLRO and broken gauge symmetry. (Condensed matter,
Quantum) ©5
(Optional: Extra credit)

This second portion of the superfluid exercise introduces broken gauge symmetry, and
deduces that a subvolume of a superfluid is best described as a superposition of states
with different numbers of particles. You’ll likely need to consult part I for context.

Number conservation and ψ. Figure 2 illustrates the fact that the local number of
particles in a subvolume of a superfluid is indeterminate. Our ground state locally
violates conservation of particle number.3 If the number of particles in a local region is
not well defined, perhaps we can think of the local state as some kind of superposition of
states with different particle number? Then we could imagine factoring the off-diagonal
long-range order 〈a†(r′)a(r)〉 ∼ ψ∗(r′)ψ(r) into 〈a†(r′)〉〈a(r)〉, with ψ(r) = 〈a〉. (This
is zero in a closed system, since a(r) changes the total number of particles.) The
immediate question is how to set the relative phases of the parts of the wavefunction
with differing numbers of particles. Let us consider a region small enough that we can
ignore the spatial variations.

II
a (r’)

I
a(r)

N bosons

Fig. 2 Delocalization and ODLRO. Particles in superfluids are delocalized: the number
of particles in a subvolume is not well defined. Annihilating a boson at r in region I, insofar as
the boson comes out of the condensate, is equivalent to annihilating it at r′. The probability
overlap between these two states is precisely ρ̂2(r

′, r) = ψ∗(r′)ψ(r).

3This is not just the difference between canonical and grand canonical ensembles. Grand canonical en-
sembles are probability mixtures between states of different numbers of particles; superfluids have a coherent
superposition of wavefunctions with different numbers of particles.



(d) Consider a zero-temperature Bose condensate of N non-interacting particles in a
local region. Let the state into which the bosons condense, χ(r) = χ = |χ| exp(iφ), be
spatially uniform. What is the phase of the N-particle Bose-condensed state?

The phase exp(iφ(r)) is the relative phase between the components of the local Bose
condensates with N and N−1 particles. The superfluid state is a coherent superposition
of states with different numbers of particles in local regions. How odd!

Momentum conservation comes from translational symmetry; energy conservation comes
from time translational symmetry; angular momentum conservation comes from rota-
tional symmetry. What symmetry leads to number conservation?

(e) Consider the Hamiltonian H for a system that conserves the total number of par-
ticles, written in second quantized form (in terms of creation and annihilation opera-
tors). Argue that the Hamiltonian is invariant under a global symmetry which multi-
plies all of the creation operators by exp(iζ) and the annihilation operators by exp(−iζ).
(This amounts to changing the phases of the N -particle parts of the wavefunction by
exp(iNζ). Hint: Note that all terms in H have an equal number of creation and anni-
hilation operators.)

The magnitude |ψ(r)|2 describes the superfluid density ns. As we saw above, ns is the
whole density for a zero-temperature non-interacting Bose gas; it is about one per cent
of the density for superfluid helium, and about 10−8 for superconductors. If we write
ψ(r) =

√
ns(r) exp(iφ(r)), then the phase φ(r) labels which of the broken-symmetry

ground states we reside in.4

Broken gauge invariance. We can draw a deep connection with quantum electromag-
netism by promoting this global symmetry into a local symmetry. Consider the effects
of shifting ψ by a spatially-dependent phase ζ(x). It will not change the potential
energy terms, but will change the kinetic energy terms because they involve gradients.
Consider the case of a single-particle pure state. Our wavefunction χ(x) changes into
χ̃ = exp(iζ(x))χ(x), and [p2/2m] χ̃ = [((~/i)∇)2 /2m] χ̃ now includes terms involving
∇ζ.
(f) Show that this single-particle Hamiltonian is invariant under a transformation which
changes the phase of the wavefunction by exp(iζ(x)) and simultaneously replaces p with
p− ~∇ζ.

This invariance under multiplication by a phase is closely related to gauge invariance
in electromagnetism. Remember in classical electromagnetism the vector potential A
is arbitrary up to adding a gradient of an arbitrary function Λ: changing A → A+∇Λ
leaves the magnetic field unchanged, and hence does not change anything physical.
There choosing a particular Λ is called choosing a gauge, and this arbitrariness is

4ψ(r) is the Landau order parameter; the phase φ(r) is the topological order parameter.



called gauge invariance. Also remember how we incorporate electromagnetism into the
Hamiltonian for charged particles: we change the kinetic energy for each particle of
charge q to (p− (q/c)A)2/2m, using the ‘covariant derivative’ (~/i)∇− (q/c)A.

In quantum electrodynamics, particle number is not conserved, but charge is conserved.
Our local symmetry, stemming from number conservation, is analogous to the symmetry
of electrodynamics when we multiply the wavefunction by exp(i(q/c)ζ(x)), where q =
−e is the charge on an electron.

(g) Consider the Hamiltonian for a charged particle in a vector potential H = ((~/i)∇−
(q/c)A)2/2m+ V (x). Show that this Hamiltonian is preserved under a transformation
which multiplies the wavefunction by exp(i(q/e)ζ(x)) and performs a suitable gauge
transformation on A. What is the required gauge transformation?

To summarize, we found that superconductivity leads to a state with a local indeter-
minacy in the number of particles. We saw that it is natural to describe local regions
of superfluids as coherent superpositions of states with different numbers of particles.
The order parameter ψ(r) = 〈a(r)〉 has amplitude given by the square root of the
superfluid density, and a phase exp(iφ(r)) giving the relative quantum phase between
states with different numbers of particles. We saw that the Hamiltonian is symmetric
under uniform changes of φ; the superfluid ground state breaks this symmetry just as
a magnet might break rotational symmetry. Finally, we saw that promoting this global
symmetry to a local one demanded changes in the Hamiltonian completely analogous to
gauge transformations in electromagnetism; number conservation comes from a gauge
symmetry. Superfluids spontaneously break gauge symmetry!

In Anderson’s articles you can find more along these lines. In particular, number N
and phase φ turn out to be conjugate variables. The implied equation i~Ṅ = [H, N ] =
i∂H/∂φ gives the Josephson current, and is also related to the the equation for the
superfluid velocity we derived in Exercise (2.5)


