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Reading
Sakurai and Napolitano, section 3.11, 5.9, and 7.5

Landau & Lifschitz Quantum Mechanics, chapter 12 sections 91-96.
Further reading

Morton Hamermesh, Group theory and its application to physical problems

6.1 Matrices, wavefunctions, and group representations. (Group reps) ©3
In this exercise, we shall explore the tensor product of two vector spaces, and how they
transform under rotations. We’ll draw analogies between two examples: vectors →
matrices and single-particle-states → two-particle-wavefunctions.

The tensor product between two vectors is (v ⊗ w)ij = viwj. The tensor product
between two single-particle wavefunctions ζ(x) for particle A and φ(y) for particle B is
the product wavefunction Ψ(x, y) = ζ(x)φ(y). If H(A) and H(B) are the Hilbert spaces
for particles A and B, the tensor product space H(AB) = H(A)⊗H(B) is the space of all
linear combinations of tensor products Ψ(x, y) = ζ(x)φ(y) of states in H(A) and H(B).
Two-particle wavefunctions live in H(AB).

Let {êi} = {x̂, ŷ, ẑ} be an orthonormal basis for R3, and let {ζi} and {φj} be orthonor-
mal bases for the Hilbert spaces H(A) and H(B) for particles A and B.

(a) Show that the tensor products Ψij(x, y) = ζi(x)φj(y) are orthonormal. (The dot
product is the usual

∫
dxdyΨ∗Ψ.) With some more work, it is possible to show that

they are also complete, forming an orthonormal basis of H(AB).)

Suppose the two particles are both in states with total angular momentum LA = LB =
1, and are then coupled with a small interaction. Angular momentum addition rules
then say that the two-particle state can have angular momentum L(AB) equal to 2 or 1
or 0: 1⊗ 1 = 2⊕ 1⊕ 0. In group representation theory, this decomposition corresponds
to finding three subspaces that are invariant under rotations.

The tensor product space R3 ⊗ R3 are normally written as 3×3 matrices Mij, where
M =

∑3
i=1

∑3
j=1 Mij êiêj. Vectors transform under L = 1, so we would expect matrices

to decompose into L = 2, 1, and 0.

(b) Show that the antisymmetric matrices, the multiples of the identity matrix, and the
traceless symmetric matrices are all invariant under rotation (i.e., R−1MR is in the



same subspace as M for any rotation R). Which subspace corresponds to which angular
momentum?

(c) Consider the L = 1 subspace of matrices M . Provide the (standard) formula taking
this space into vectors in R3. Why are these called pseudovectors?

I always found torque τ = r × F quite mysterious. (Its direction depends on whether
you are right- or left-handed!) Fundamentally, we see now that this is because torque
isn’t a vector – it is an antisymmetric 3×3 matrix.

How does this relate back to quantum wavefunctions? Suppose our two L = 1 particles
are identical, with spins in the same state.

(d) Which angular momentum states are allowed for spin-aligned fermions? For spin-
aligned or spinless bosons?

Many physical properties are described by symmetric matrices: the dielectric constant
in electromagnetism, the stress and strain tensors in elastic theory, and so on.

6.2 Crystal field theory: d-orbitals. (Group reps) ©3
The vector space of functions f(x, y, z) on the unit sphere transforms into itself un-
der rotations f(x) →R f(R−1x). These transformations are linear (af(x) + g(x) →R

af(R−1x)+ g(R−1x)), and obey the group composition rule, and thus form a represen-
tation of the rotation group.

(a) Argue that the homogeneous polynomials of degree `,

f(x, y, z) =
∑̀
m=0

`−m∑
n=0

f`mnx
mynz`−m−n (1)

form a subspace that is invariant under rotations.

Thus the irreducible representations are contained in these invariant subspaces. Sakurai
indeed mentions in his section 3.11 on tensor operators that Y 0

1 =
√

3/πz/r and Y ±1
1 =√

3/2π(x± iy)/r, and also gives a formula for Y ±2
2 ; since r = 1 on our unit sphere these

are homogeneous polynomials of degree one.

(b) Look up the ` = 2 spherical harmonics (e.g. in Sakurai’s appendix B) and write
them as quadratic polynomials in x, y, and z.

The ` = 2 spherical harmonics are the angular parts of the wavefunctions for electrons
in d orbitals (e.g. of transition metal atoms).1 Electrons in d-orbitals are much more

1Here we use the common independent-electron language, where the complex many-body wavefunction
of an atom, molecule, or solid is viewed as filling single-electron states, even though the electron-electron
repulsion is almost as strong as the electron-nuclear attraction. This idea can be dignified in three rather
different ways. First, one can view each electron as feeling an effective potential given by the nucleus plus the
average density of electrons. This leads to mean-field Hartree-Fock theory. Second, one can show that the
ground state energy can be written as an unknown functional of the electron density (the Hohenberg-Kohn
theorem, and then calculate the kinetic energy terms as an effective single-body Schrödinger equation in the



tightly contained near the nucleus than p and s orbitals. In molecules and solids, the s
and p orbitals usually hybridize (superimpose) into chemical bonds and broad electron
bands, where the original orbitals are strongly distorted. In contrast, d-electrons rarely
participate in chemical bonds, and their electron bands are narrow – almost undistorted
orbitals with small hopping rates. The energy levels of the five d-orbitals are, however,
shifted from one another by their environments. (For crystals, these shifts are called
crystal field splittings.)

We can use group representation theory to understand how the d-orbitals are affected
by their molecular or crystalline environment.

First, we need to calculate the character χ(R) = χ(n̂, φ) of the ` = 2 representation.
Remember that the character is the trace of the (here 5× 5) matrix corresponding to
the rotation. Remember that this trace depends only on the conjugacy class of R –
that is, if S is some other group element then χ(S−1RS) = χ(R). Remember that any
two rotations by the same angle φ are conjugate to one another.2

In class, we found that the character of the ` = 1 representation by using the Cartesian

x, y, z basis, where Rẑ(φ) =

(
cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

)
. Hence χ(1)(φ) = 1+2 cos(φ). We can do

this same calculation in the mz basis of the spherical harmonics, where Y 0
1 is unchanged

under rotations and Y ±1
1 → exp(±iφ)Y ±1

1 . Here Rẑ(φ) =

(
exp(iφ) 0 0

0 1 0
0 0 exp(−iφ)

)
, and again

χ(1)(φ) = 1 + 2 cos(φ).

(c) Calculate χ(2)(φ). Give the characters for rotations Cn by 2π/n, for n = 1, 2, 3,
and 4 (the important rotations for crystalline symmetry groups.)

The most common symmetry groups for d-electron atoms in crystals is O, the octahedral
group (the symmetry group of a cube). Look up the character tables for the irreducible
representations of this finite group. (To simplify the calculation, we’ll assume that
inversion symmetry is broken; otherwise we should use Oh, which has twice the number
of group elements.)

(d) Use the orthogonality relations of the characters of irreducible representations for
O, decompose the ` = 2 representation above into irreducible representations of the
octahedral group. How will the energies of the single-particle d-orbitals of a transition
metal atom split in an octahedral environment? What will the degeneracies and sym-
metries (A1, A2, E, . . . ) be of the different levels? (Hint: If you are doing it right,
the dot product of the characters should equal a multiple of the number of octahedral

resulting effective potential due to the net electron density (the Kohn-Sham equations). Third, one can start
with independent electrons (or Hartree-Fock electrons) and slowly ‘turn on’ the electron-electron repulsion.
The independent-electron excited eigenstates develop lifetimes and become resonances. For atoms these
lifetimes represent Auger decay rates. For crystals these resonances are called quasiparticles and the theory
is called Landau Fermi liquid theory. Landau Fermi-liquid theory is usually derived using Greens functions
and Feynman diagrams, but it has recently been re-cast as a renormalization-group flow.

2If the two rotations have axes n̂ and n̂′, choose S to rotate n̂′ into n̂.



group elements o(O) = 24, and the dimensions of the sub-representations should add
up to five.)

The five d-orbitals are often denoted dxy, dxz, dyz, dz2 and dx2−y2 . This is a bit of a
cheat; really dz2 should be written d2z2−x2−y2 or something like that.

(e) Figure out which of these orbitals are in each of the two representations you found
in part (d). (Hint: Check how these five orbitals transform under the octahedral
symmetries that permute x, y, and z among themselves.)

6.3 White dwarfs, neutron stars, and black holes. (Astrophysics, Quantum) ©3
As the energy sources in large stars are consumed, and the temperature approaches
zero, the final state is determined by the competition between gravity and the chemical
or nuclear energy needed to compress the material.

A simplified model of ordinary stellar matter is a Fermi sea of non-interacting electrons,
with enough nuclei to balance the charge. Let us model a white dwarf (or black dwarf,
since we assume zero temperature) as a uniform density of He4 nuclei and a compen-
sating uniform density of electrons. Assume Newtonian gravity. Assume the chemical
energy is given solely by the energy of a gas of non-interacting electrons (filling the
levels to the Fermi energy).

(a) Assuming non-relativistic electrons, calculate the energy of a sphere with N zero-
temperature non-interacting electrons and radius R.3 Calculate the Newtonian gravita-
tional energy of a sphere of He4 nuclei of equal and opposite charge density. At what
radius is the total energy minimized?

A more detailed version of this model was studied by Chandrasekhar and others as a
model for white dwarf stars. Useful numbers: mp = 1.6726 × 10−24 g, mn = 1.6749 ×
10−24 g, me = 9.1095× 10−28 g, ~ = 1.05459× 10−27 erg s, G = 6.672× 10−8 cm3/(g s2),
1 eV = 1.60219× 10−12 erg, kB = 1.3807× 10−16 erg/K, and c = 3× 1010 cm/s.

(b) Using the non-relativistic model in part (a), calculate the Fermi energy of the elec-
trons in a white dwarf star of the mass of the Sun, 2× 1033 g, assuming that it is com-
posed of helium. (i) Compare it to a typical chemical binding energy of an atom. Are we
justified in ignoring the electron–electron and electron–nuclear interactions (i.e., chem-
istry)? (ii) Compare it to the temperature inside the star, say 107 K. Are we justified in
assuming that the electron gas is degenerate (roughly zero temperature)? (iii) Compare
it to the mass of the electron. Are we roughly justified in using a non-relativistic theory?
(iv) Compare it to the mass difference between a proton and a neutron.

The electrons in large white dwarf stars are relativistic. This leads to an energy which
grows more slowly with radius, and eventually to an upper bound on their mass.

3You may assume that the single-particle eigenstates have the same energies and k-space density in a
sphere of volume V as they do for a cube of volume V ; just like fixed versus periodic boundary conditions,
the boundary does not matter to bulk properties.



(c) Assuming extremely relativistic electrons with ε = pc, calculate the energy of a
sphere of non-interacting electrons. Notice that this energy cannot balance against the
gravitational energy of the nuclei except for a special value of the mass, M0. Calculate
M0. How does your M0 compare with the mass of the Sun, above?

A star with mass larger than M0 continues to shrink as it cools. The electrons (see (iv)
in part (b) above) combine with the protons, staying at a constant density as the star
shrinks into a ball of almost pure neutrons (a neutron star, often forming a pulsar
because of trapped magnetic flux). Recent speculations suggest that the ‘neutronium’
will further transform into a kind of quark soup with many strange quarks, forming a
transparent insulating material.

For an even higher mass, the Fermi repulsion between quarks cannot survive the grav-
itational pressure (the quarks become relativistic), and the star collapses into a black
hole. At these masses, general relativity is important, going beyond the purview of this
text. But the basic competition, between degeneracy pressure and gravity, is the same.


