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Reading
Sakurai and Napolitano, sections 3.10, 5.7, 5.9

Sethna, Mössbauer, the X-ray Edge, and Macroscopic Quantum Effects, half-done draft
manuscript from years ago.

7.1 Sakurai and Napolitano, exercise 5.23, “A one dimensional harmonic oscillator . . . spatially
uniform force . . . ”

7.2 Sakurai and Napolitano, exercise 5.35, “Consider an atom made up . . . ”

7.3 Molecular Rotations. (Quantum) ©3
In class, we estimated the frequency of atomic vibrations, by generating a simple model
of an atom of mass AMP in a harmonic potential whose length and energy scales were
set by electron physics (a Bohr radius and a fraction of a Rydberg). In the end,
we distilled the answer that atomic vibrations were lower in frequency than those of
electrons by a factor

√
MP /me, times constants of order one.

Here we consider the frequencies of molecular rotations.

(a) By a similar argument, derive the dependence of molecular rotation energy splittings
on the mass ratio MP /me.

(b) Find some molecular rotation energy splittings in the literature. Are they in the
range you expect from your estimates of part (a)?

7.4 Bell.1 (Quantum,Qbit) ©3
Consider the following cooperative game played by Alice and Bob: Alice receives a bit
x and Bob receives a bit y, with both bits uniformly random and independent. The
players win if Alice outputs a bit a and Bob outputs a bit b, such that (a+b = xy)mod2.
They can agree on a strategy in advance of receiving x and y, but no subsequent
communication between them is allowed.

(a) Give a deterministic strategy by which Alice and Bob can win this game with 3/4
probability.

1This exercise was developed by Paul Ginsparg, based on an example by Bell ’64 with simplifications by
Clauser, Horne, Shimony, & Holt (’69).



(b) Show that no deterministic strategy lets them win with more than 3/4 probability.
(Note that Alice has four possible deterministic strategies [0, 1, x,∼x], and Bob has four
[0, 1, y,∼y], so theres a total of 16 possible joint deterministic strategies.)

(c) Show that no probabilistic strategy lets them win with more than 3/4 probability. (In
a probabilistic strategy, Alice plays her possible strategies with some fixed probabilities
p0, p1, px, p∼x, and similarly Bob plays his with probabilities q0, q1, qy, q∼y.)

The upper bound of <= 75% of the time that Alice and Bob can win this game provides,
in modern terms, an instance of the Bell inequality, where their prior cooperation
encompasses the use of any local hidden variable.

Let’s see how they can beat this bound of 3/4, by measuring respective halves of an
entangled state, thus quantum mechanically violating the Bell inequality.2

Suppose Alice and Bob share the entangled state 1√
2
(| ↑ 〉`| ↑ 〉r + | ↓ 〉`| ↓ 〉r), with Alice

holding the left Qbit and Bob holding the right Qbit. Suppose they use the following

strategy: if x = 1, Alice applies the unitary matrix Rπ/6 =

(
cos π

6
− sin π

6

sin π
6

cos π
6

)
to her

Qbit, otherwise doesn’t, then measures in the standard basis and outputs the result

as a. If y = 1, Bob applies the unitary matrix R−π/6 =

(
cos π

6
sin π

6

− sin π
6

cos π
6

)
to his

Qbit, otherwise doesn’t, then measures in the standard basis and outputs the result as
b. (Note that if the Qbits were encoded in photon polarization states, this would be
equivalent to Alice and Bob rotating measurement devices by π/6 in inverse directions
before measuring.)

(d) Using this strategy: (i) Show that if x = y = 0, then Alice and Bob win the game
with probability 1.
(ii) Show that if x = 1 and y = 0 (or vice versa), then Alice and Bob win with probability
3/4.
(iii) Show that if x = y = 1, then Alice and Bob win with probability 3/4.
(iv) Combining parts (i)–(iii), conclude that Alice and Bob win with greater overall
probability than would be possible in a classical universe.

This proves an instance of the CHSH/Bell Inequality, establishing that “spooky action
at a distance” cannot be removed from quantum mechanics. Alice and Bob’s ability
to win the above game more than 3/4 of the time using quantum entanglement was
experimentally confirmed in the 1980s (A. Aspect et al.).3

2There’s another version for GHZ state, where three people have to get a+b+c mod 2 = x or y or z.
Again one can achieve only 75% success classically, but they can win every time sharing the right quantum
state

3Ordinarily, an illustration of these inequalities would appear in the physics literature not as a game but as
a hypothetical experiment. The game formulation is more natural for computer scientists, who like to think
about different parties optimizing their performance in various abstract settings. As mentioned, for physicists
the notion of a classical strategy is the notion of a hidden variable theory, and the quantum strategy involves
setting up an experiment whose statistical results could not be predicted by a hidden variable theory.



(e) (Bonus) Consider a slightly different strategy, in which before measuring her half
of the entangled pair Alice does nothing or applies Rπ/4, according to whether x is 0
or 1, and Bob applies Rπ/8 or R−π/8, according to whether y is 0 or 1. Show that this
strategy does even better than the one analyzed in a–c, with an overall probability of
winning equal to cos2 π/8 = (1 +

√
1/2)/2 ≈ .854.

(Extra bonus) Show this latter strategy is optimal within the general class of strategies
in which before measuring Alice applies Rα0 or Rα1, according to whether x is 0 or 1,
and Bob applies Rβ0 or Rβ1, according to whether y is 0 or 1.

This will demonstrate that no local hidden variable theory can reproduce all predictions
of quantum mechanics for entangled states of two particles.

7.5 Random matrix theory.4 (Mathematics, Quantum) ©3
One of the most active and unusual applications of ensembles is random matrix theory,
used to describe phenomena in nuclear physics, mesoscopic quantum mechanics, and
wave phenomena. Random matrix theory was invented in a bold attempt to describe
the statistics of energy level spectra in nuclei. In many cases, the statistical behavior of
systems exhibiting complex wave phenomena—almost any correlations involving eigen-
values and eigenstates—can be quantitatively modeled using ensembles of matrices with
completely random, uncorrelated entries!

To do this exercise, you will need to find a software environment in which it is easy to
(i) make histograms and plot functions on the same graph, (ii) find eigenvalues of matri-
ces, sort them, and collect the differences between neighboring ones, and (iii) generate
symmetric random matrices with Gaussian and integer entries. Mathematica, Matlab,
Octave, and Python are all good choices. For those who are not familiar with one of
these packages, I will post hints on how to do these three things under ‘Random ma-
trix theory’ in the computer exercises section of the book web site (http://pages.physics.
cornell.edu/∼myers/teaching/ComputationalMethods/ComputerExercises/RandomMat
rixTheory/RandomMatrixTheory.html

The most commonly explored ensemble of matrices is the Gaussian orthogonal ensem-
ble (GOE). Generating a member H of this ensemble of size N ×N takes two steps.

• Generate an N×N matrix whose elements are independent random numbers with
Gaussian distributions of mean zero and standard deviation σ = 1.

• Add each matrix to its transpose to symmetrize it.

As a reminder, the Gaussian or normal probability distribution of mean zero gives a
random number x with probability

ρ(x) =
1√
2πσ

e−x2/2σ2

. (1)

4This exercise was developed with the help of Piet Brouwer.



One of the most striking properties that large random matrices share is the distribution
of level splittings.

(a) Generate an ensemble with M = 1000 or so GOE matrices of size N = 2, 4, and
10. (More is nice.) Find the eigenvalues λn of each matrix, sorted in increasing order.
Find the difference between neighboring eigenvalues λn+1 − λn, for n, say, equal to5

N/2. Plot a histogram of these eigenvalue splittings divided by the mean splitting, with
bin size small enough to see some of the fluctuations. (Hint: Debug your work with
M = 10, and then change to M = 1000.)

What is this dip in the eigenvalue probability near zero? It is called level repulsion.

For N = 2 the probability distribution for the eigenvalue splitting can be calculated
pretty simply. Let our matrix be M =

(
a b
b c

)
.

(b) Show that the eigenvalue difference for M is λ =
√

(c− a)2 + 4b2 = 2
√

d2 + b2

where d = (c−a)/2, and the trace c+a is irrelevant. Ignoring the trace, the probability
distribution of matrices can be written ρM(d, b). What is the region in the (b, d) plane
corresponding to the range of eigenvalue splittings (λ, λ + ∆)? If ρM is continuous and
finite at d = b = 0, argue that the probability density ρ(λ) of finding an eigenvalue
splitting near λ = 0 vanishes (level repulsion). (Hint: Both d and b must vanish to
make λ = 0. Go to polar coordinates, with λ the radius.)

(c) Calculate analytically the standard deviation of a diagonal and an off-diagonal el-
ement of the GOE ensemble (made by symmetrizing Gaussian random matrices with
σ = 1). You may want to check your answer by plotting your predicted Gaussians over
the histogram of H11 and H12 from your ensemble in part (a). Calculate analytically
the standard deviation of d = (c − a)/2 of the N = 2 GOE ensemble of part (b), and
show that it equals the standard deviation of b.

(d) Calculate a formula for the probability distribution of eigenvalue spacings for the
N = 2 GOE, by integrating over the probability density ρM(d, b). (Hint: Polar coordi-
nates again.)

If you rescale the eigenvalue splitting distribution you found in part (d) to make the
mean splitting equal to one, you should find the distribution

ρWigner(s) =
πs

2
e−πs2/4. (2)

This is called the Wigner surmise; it is within 2% of the correct answer for larger
matrices as well.6

(e) Plot eqn 2 along with your N = 2 results from part (a). Plot the Wigner surmise
formula against the plots for N = 4 and N = 10 as well.

5Why not use all the eigenvalue splittings? The mean splitting can change slowly through the spectrum,
smearing the distribution a bit.

6The distribution for large matrices is known and universal, but is much more complicated to calculate.



Does the distribution of eigenvalues depend in detail on our GOE ensemble? Or could
it be universal, describing other ensembles of real symmetric matrices as well? Let us
define a ±1 ensemble of real symmetric matrices, by generating an N×N matrix whose
elements are independent random variables, each ±1 with equal probability.

(f) Generate an ensemble of M = 1000 symmetric matrices filled with ±1 with size
N = 2, 4, and 10. Plot the eigenvalue distributions as in part (a). Are they universal
(independent of the ensemble up to the mean spacing) for N = 2 and 4? Do they appear
to be nearly universal 7 (the same as for the GOE in part (a)) for N = 10? Plot the
Wigner surmise along with your histogram for N = 10.

The GOE ensemble has some nice statistical properties. The ensemble is invariant
under orthogonal transformations:

H → R>HR with R> = R−1. (3)

(g) Show that Tr[H>H] is the sum of the squares of all elements of H. Show that this
trace is invariant under orthogonal coordinate transformations (that is, H → R>HR
with R> = R−1). (Hint: Remember, or derive, the cyclic invariance of the trace:
Tr[ABC] = Tr[CAB].)

Note that this trace, for a symmetric matrix, is the sum of the squares of the diagonal
elements plus twice the squares of the upper triangle of off-diagonal elements. That is
convenient, because in our GOE ensemble the variance (squared standard deviation) of
the off-diagonal elements is half that of the diagonal elements (part (c)).

(h) Write the probability density ρ(H) for finding GOE ensemble member H in terms
of the trace formula in part (g). Argue, using your formula and the invariance from
part (g), that the GOE ensemble is invariant under orthogonal transformations: ρ(R>HR) =
ρ(H).

This is our first example of an emergent symmetry. Many different ensembles of sym-
metric matrices, as the size N goes to infinity, have eigenvalue and eigenvector distri-
butions that are invariant under orthogonal transformations even though the original
matrix ensemble did not have this symmetry. Similarly, rotational symmetry emerges
in random walks on the square lattice as the number of steps N goes to infinity, and
also emerges on long length scales for Ising models at their critical temperatures.

7.6 Quantum dissipation from phonons. (Quantum) ©2
Electrons cause overlap catastrophes (X-ray edge effects, the Kondo problem, macro-
scopic quantum tunneling); a quantum transition of a subsystem coupled to an electron
bath ordinarily must emit an infinite number of electron-hole excitations because the
bath states before and after the transition have zero overlap. This is often called an
infrared catastrophe (because it is low-energy electrons and holes that cause the zero

7Note the spike at zero. There is a small probability that two rows or columns of our matrix of ±1 will
be the same, but this probability vanishes rapidly for large N .



overlap), or an orthogonality catastrophe (even though the two bath states aren’t just
orthogonal, they are in different Hilbert spaces). Phonons typically do not produce
overlap catastrophes (Debye–Waller, Frank–Condon, Mössbauer). This difference is
usually attributed to the fact that there are many more low-energy electron-hole pairs
(a constant density of states) than there are low-energy phonons (ωk ∼ ck, where c is
the speed of sound and the wave-vector density goes as (V/2π)3d3k).

Vo

  Q
o

 AFM /STM tip AFM /STM tip

Substrate Substrate

Fig. 1 Atomic tunneling from a tip. Any internal transition among the atoms in an
insulator can only exert a force impulse (if it emits momentum, say into an emitted photon),
or a force dipole (if the atomic configuration rearranges); these lead to non-zero phonon
overlap integrals only partially suppressing the transition. But a quantum transition that
changes the net force between two macroscopic objects (here a surface and a STM tip) can
lead to a change in the net force (a force monopole). We ignore here the surface, modeling
the force as exerted directly into the center of an insulating elastic medium.8See “Atomic
Tunneling from a STM/AFM Tip: Dissipative Quantum Effects from Phonons” Ard A. Louis
and James P. Sethna, Phys. Rev. Lett. 74, 1363 (1995), and “Dissipative tunneling and
orthogonality catastrophe in molecular transistors”, S. Braig and K. Flensberg, Phys. Rev.
B 70, 085317 (2004).

However, the coupling strength to the low energy phonons has to be considered as well.
Consider a small system undergoing a quantum transition which exerts a net force at
x = 0 onto an insulating crystal:

H =
∑

k

p2
k/2m + 1/2 mω2

kq
2
k + F · u0. (4)

Let us imagine a kind of scalar elasticity, to avoid dealing with the three phonon
branches (two transverse and one longitudinal); we thus naively write the displacement
of the atom at lattice site xn as un = (1/

√
N)

∑
k qk exp(−ikxn) (with N the number

of atoms), so qk = (1/
√

N)
∑

n un exp(ikxn).

Substituting for u0 in the Hamiltonian and completing the square, find the displacement
∆k of each harmonic oscillator. (Physically, the force F adds a small linear term
to the phonon mode with wavevector k, whose minimum becomes displaced by some
amount ∆k.) Let |F 〉 be the ground state of the harmonic oscillators under the force



F . Write the formula for the likelihood 〈F |0〉 that the phonons will all end in their
ground states, as a product over k of the phonon overlap integral exp(−∆2

k/8σ
2
k) (with

σk =
√

~/2mωk the zero-point motion in that mode). Converting the product to the
exponential of a sum, and the sum to an integral

∑
k ∼ (V/(2π)3

∫
dk, do we observe

an overlap catastrophe?

Note that you’ve calculated the probability of a zero-phonon transition – the likelihood
that the quantum transition can happen without emitting any phonons is zero. But
the same argument shows that there is zero probability of emitting one phonon, or
any finite number of phonons. The only allowed transitions emit an infinite number of
low-energy phonons. The initial and final ground states are in ‘different Hilbert spaces’
– no finite number of excitations can connect them.


