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Symmetry and Decomposition

• Orthogonal Bases
• Fourier Decomposition
• Normal Modes
• Eigenmodes



A feeling

Triangle

What are you allowed to do to the triangle to keep it
unchanged?

Circle
What operations are you allowed to do to the circle that leave it
unchanged?



Triangle

What operations can we do that leave the triangle invariant?

There are six total



C3v

• We can also represents
groups with these
stereographic pictures.

• It is a way to create an
object with the same
symmetry.

• Imagine a plate with a
single peg.



C3v

• Now start applying
symmetry operations until
done.

• First apply a rotation, we
have to create a new peg.



C3v

Rotate again and we create
another.



C3v

• Now apply the mirror
symmetry.

• We’re done, these pegs all
transform into one other,
we don’t create any more.

• This plate-peg guy has the
same symmetry as our
triangle



C3v
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• You can also identify
individual pegs with
individual group elements.

• Useful for reasoning out
group operations.



Multiplication Table

e r r2 v rv r2v
e e r r2 v rv r2v
r r r2 e rv r2v v
r2 r2 e r r2v v rv
v v r2v rv e r2 r
rv rv v r2v r e r2

r2v r2v rv v r2 r e



Group - Informal

Informally, it seems we have some common ground
• You can always do nothing

• You can always undo
• You can compose operations to get another one.
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Group - Formal

Definition
A group is a set G and a binary operation ·, (G, ·), such that
• identity: ∃e ∈ G,∀g ∈ G : g · e = e · g = g
• inverses: ∀g ∈ G,∃g−1 ∈ G : g · g−1 = g−1 · g = e
• closure: ∀g1,g2 ∈ G : g1 · g2 ∈ G
• associativity: ∀g1,g2,g3 ∈ G : g1 · (g2 · g3) = (g1 · g2) · g3



Associativity

Figure: xkcd:37 [alt text]=I do this constantly.



Other Examples

Some examples:
• The symmetry operations of a triangle, square, cube,

sphere, ... (really anything)
• The rearrangements of N elements (the symmetric group

of order N)
• The integers under addition
• The set (0,..,n-1) under addition mod n
• The real numbers (less zero) under multiplication

Some non examples:
• The integers under multiplication. (no inverses in general)
• The renormalization group (no inverses)



Representation

This is all and well, but if we want to do some kind of physics,
we need to know how our group transforms things of interest.
Take

x =

x
y
z


And determine how it behaves under the transformations.



Vector Representation of C3v

E =

1 0 0
0 1 0
0 0 1

 R =
1
2

 −1
√

3 0
−
√

3 −1 0
0 0 2



R2 =
1
2

−1 −
√

3 0√
3 −1 0

0 0 2

 V =

−1 0 0
0 1 0
0 0 1



RV =
1
2

 1
√

3 0√
3 −1 0

0 0 2

 R2V =
1
2

 1 −
√

3 0
−
√

3 −1 0
0 0 2


Fun fact: These matrices satisfy exactly the same multiplication
table!



Representation - Formally

Definition
A representation Γ is a mapping from the group set G to Mn,n
such that Γik (g1)Γkj(g2) = Γij(g1 · g2), ∀g1,g2 ∈ G.

That is, you represent the group elements by matrices,
ensuring that you maintain the multiplication table.



Example Representations of C3v

Some examples:
• Represent every group element by the number 1. (The

trivial representation)
• Represent, (e, r , r2) by 1 and (v , rv , r2v ) by -1
• Use the matrices we had before (the vector

representation?)
• The regular representation, in which you make matrices of

the multiplication table. (treat each element as an
orthogonal vector)

Note: You can form representations of any dimension.



Functions

You can also generate new representations easily.
Consider

f (x)

Let’s say we want to to transform naturally:

f ′(x ′) = f (x)

This defines some linear operators

f ′(x ′) = ORf (x ′) = ORf (Rx) = f (x)

ORf (x) = f (R−1x)

These {OR} will form a representation.



Example

Take f (x) = x , under the transformations, this becomes

e : x r : −1
2

(1−
√

3)x r2 : −1
2

(1 +
√

3)x

v : −x rv :
1
2

(1 +
√

3)x r2v :
1
2

(1−
√

3)x

This generates two linearly independent functions, x and
χ ≡ −1

2(1−
√

3)x .



Example

Take f (x) = x , under the transformations, this becomes, with
χ = −1

2(1−
√

3)x

e : x r : χ r2 : −(x + χ)

v : −x rv : −χ r2v : (x + χ)

and acting on χ we have

e : χ r : −(x + χ) r2 : x

v : (x + χ) rv : −x r2v : −χ

This suggests a matrix representation of our group...



Example

e :

(
1 0
0 1

)
r :

(
0 1
−1 −1

)
r2 :

(
−1 −1
1 0

)
v :

(
−1 0
1 1

)
rv :

(
0 −1
−1 0

)
r2v :

(
1 1
0 −1

)



Second Example

Take f (x) = z, under the transformations, this becomes

e : z r : z r2 : z

v : z rv : z r2v : z

Only one function generated, 1D representation generated, all
elements become identity functions.



Similarity Transforms

This representation is far from unique. Any invertible matrix can
form a new representation

S =

0 0 1
0 1 0
1 0 0


can generate a new representation

R′ = S−1RS

because we will still satisfy the group algebra

R1R2 = R3 =⇒ (S−1R1S)(S−1R2S) = (S−1R3S)



Characters

Because of this, we would like some invariant quality of the
representation. How about the trace, define the character of a
group element in a particular representation as the trace of its
matrix.

χΓ(R) = Tr R = Tr (S−1RS) = Tr (S−1SR) = Tr R



Characters

Because of this, we would like some invariant quality of the
representation. How about the trace, define the character of a
group element in a particular representation as the trace of its
matrix.

χΓ(R) = Tr R = Tr (S−1RS) = Tr (S−1SR) = Tr R

For the vector representation we created above:

χV (E) = 3

χV (R) = 0 χV (R2) = 0

χV (V ) = 1 χV (RV ) = 1 χV (R2V ) = 1



Classes

Notice that a lot of these guys have the same character.
A class is a collection of group elements that are roughly
equivalent

g1 ≡ g2 if ∃s ∈ G : s−1g2s = g1

In our case we have three classes. The identity (always its own
class), the rotations, and the mirror symmetries.



Reducible Representation

Note also that in this case, our representation is reducible. We
have an invariant subspace, namely the 2D space (x , y), which
always transforms into itself, as well as z which doesn’t
transform.
An irreducible representation is one that cannot be reduced, i.e.
it has no invariant subspaces.
There are a finite number of (equivalent) irreducible
representations for a finite group.



Character Table

The irreducible representations for the point groups are well
documented, in character tables. E.g.

E 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

V 3 0 1

Super orthogonality! Across both rows and columns.



Orthogonality

Turns out, there is a sort of orthogonality for the irreducible
representations of a group.∑

g

[
Di
αβ(g)

]∗
Dj
γδ(g) =

h
ni
δijδαγδβδ

Think of this as α× β different h dimensional vector spaces,
with the matrix elements being the coordinates. We have
orthogonality.



Reducible representation - sums

Agreeing with our intuition, we see that our 3D representation is
reducible into a 2D one and 1D one. We say it is the direct sum
of the two:

V = A1 ⊕ E

In fact all of its matrices were block diagonal (2x2 and 1x1)a b 0
c d 0
0 0 e





Direct Product Representations

Another useful way to generate new representations is by
forming direct product representations. This happens a lot of in
physics, like tensors.
We had a representation that acted on vectors,

v ′i = Rijvj

How do you transform tensors? You act on each index.

M ′ij = RikRjlMkl

The characters of a the direct product representation are the
products of the characters

χ(R ⊗ R) = Tr RikRjl = RiiRii = (Tr R)2 = χ(R)2



Matrices

E 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

V 3 0 1
M = V ⊗ V 9 0 1
E ⊗ E 4 1 0

So we see
M = 2A1 ⊕ A2 ⊕ 3E

E ⊗ E = A1 ⊕ A2 ⊕ E



Eigenmodes
Let’s consider a triangle of masses connected by springs. Let’s
saw we want to know the eigenmodes of the system. First, let’s
form our representation.

x3, y3, z3 x2, y2, z2

x1, y1, z1



Representation

This forms a 9D representation of the group T . What are its
characters

χ(E) = 9 χ(R) = 0 χ(V ) = 1

We already know how to decompose this

T = 2A1 ⊕ A2 ⊕ 3E

But what do these correspond to?



Projection operator

Since the character tables are super orthogonal

PΓ =
∑

g

χΓ(g)D(g)



Projecting Down

E:

V:

R:

RV:

R2:

R2V:

y1

PA1  = + + =2 22

PA2  = + + = 0-( ) -( ) - ()
PE  = - - =2



Projecting Down

E:

V:

R:

RV:

R2:

R2V:

x1

PA1  = 0

PA2  =

PE  =



Projecting Down

E:

V:

R:

RV:

R2:

R2V:

z1

PA2  = 0

PA1  =

PE  =



Normal Modes

T =     2 A1     +     A2      +        3 E 



Continous Groups

There are also all of the continous groups. Consider SO(3), the
group of 3D rotations.
The irreducible representations are the spherical harmonics.

Ylm = eimφPm
l (cos θ)

With dimensionality
d = (2l + 1)

The characters are:

χl(ψ) =
sin
[(

l + 1
2

)
ψ
]

sin
(
ψ
2

)
where ψ is how much rotation you do (the classes)



Vectors

Orthogonality becomes integral

δij =
1
π

∫ π

0
dψ (1− cosψ)χi∗(ψ)χj(ψ)

Consider the vector representation

χV (ψ) = 1 + 2 cosψ

So we can decompose this

V = 1



Spherical Tensors

and its direct product (read matrices)

χV⊗V = (1 + 2 cosψ)2

decomposes as
V ⊗ V = 0⊕ 1⊕ 2

but you already knew that

Mii (Mij −Mji) (Mij + Mji)−
1
3

Mii

A matrix has its trace (d=1), antisymmetric part (d=3), and
symmetric trace free part (d=5).



2 Parameter Family

Looking again at the irreducible representations of the rotation
group, we note that it was a 2 parameter family, (j , l) with the
group theory telling us that j was an integer, and
l = −(2l + 1), ..., (2l + 1).
These parameters are physically important quantum numbers,
the angular momentum and the magnetic quantum number.



Fourier Transforms

Consider the group of translations. x → x + a. Forms a group.
It’s irreducible representations are

f (x) = eikx

f (x + a) = eik(x+a) = eikxeika = ceikx

look familiar?
And the orthogonality theorem tells us that these are all
orthogonal. Sound familiar?
Irreps form a one parameter family, corresponding to k , or
”momentum”



Poincare Group

Fun fact: The poincare group, the full symmetry group of
Minkowski space (translation in space or time, boosts,
rotations) has as its unitary irreducible representations a two
parameter family (m, s) with these also being physically
relevant quantum numbers, namely mass and spin.



Elastic Constants

Why do isotropic solids have 2 (linear) elastic constants, while
cubic materials have 3?
Linear elasticity is all of the scalars in

εijεkl

{{
VSO(3) ⊗ VSO(3)

}
⊗
{

VSO(3) ⊗ VSO(3)

}}
= 2A1 ⊕ · · ·{{

VOh ⊗ VOh

}
⊗
{

VOh ⊗ VOh

}}
= 3A1 ⊕ · · ·



Graphene

Now let’s talk a bit about graphene.

The goal

To enumerate all possible terms in the free energy



Symmetries of Graphene

Whatever the energy function is, we know it has a lot of
invariants:
• Discrete crystallographic translations
• 3D rotations of deformed sheet
• Graphene point group symmetries

The translations I know how to handle – Plane wave basis /
Fourier Transforms. What about the others?



The Deformation Gradient

Think of elasticity as an
embedding.

Y : R2 → R3

XJ = YJ(xi)

dXJ = FiJdxi

The deformation gradient
contains the important
information about the
deformation.

F T F = 1 + 2ε

F = RU



Sublattices

A and B atoms

So, actually two
functions

Ȳ =
1
2

(
Y A + Y B

)
∆ = Y A − Y B

Ȳ gives rise to F



Point Group Symmetries - D6h

• Graphene has a D6h point
group symmetry.

• 24 group elements



D6h

E 2C6 2C3 C2 3C′
2 3C′′

2 i 2S3 2S6 σh 3σd 3σv

A1g 1 1 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1
B1g 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1
E1g 2 1 -1 -2 0 0 2 1 -1 -2 0 0
E2g 2 -1 -1 2 0 0 2 -1 1 2 0 0
A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1
B1u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 -1
B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1
E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0
E2u 2 -1 -1 2 0 0 -2 1 -1 -2 0 0



Free Energy

Now we can systematically expand the free energy...
• Powers of the strain
• Gradients
• Terms involving ∆

The possible terms in our free energy are severely restricted by
symmetry

FiJ :(vector on D6h)× (vector on SO(3))

εij :(rank 2 tensor on D6h)

∆J :(pseudoscalar on D6h)× (vector on SO(3))

∇i :(vector on D6h)



Example Term

Consider an example term

AIiJjklm∆IFiJεjkεlm

We have a bunch of conditions (basically)
• Every little index must be invariant under D6h

• Every big index must be invariance under SO(3)

• We must be able to swap (jk)↔ (lm)

This term forms a representation of our symmetries, namely[
VD6h

]
⊗
[
VD6h ⊗ VSO(3)

]
⊗
{[

VD6h ⊗ VSO(3)

]
⊗
[
VD6h ⊗ VSO(3)

]}



Why I do it

There could have been

3× (2× 3)× (2× 2)× (2× 2) = 288

Terms.
But turns out there are only 2 allowed.

Tijk ∆IFiIεjkεll

Tklm∆IFiIεikεlm

where
T111 = T122 = T212 = T221 = 0

T112 = T222 = −1

T121 = T211 = 1



Expand the Free Energy
Paying attention to symmetry...

F = α0εii

+ α1εiiεjj + α2εijεij

+ α3εiiεjjεkk + α4εijεjkεki + α5Hijklmnεijεklεmn

+ α6a2
0FiI∇j∇jFiI

+ α7a4
0FiI∇j∇j∇k∇kFiI + α8a4

0HijklmnFiI∇j∇k∇l∇mFnI

+ α9a−1
0 Tijk ∆IFiIεjk

+ α10a−1
0 Tijk ∆IFiIεjkεll + α11a−1

0 Tklm∆IFiIεikεlm

+ α12a−2
0 ∆I∆I

+ α13a−2
0 ∆IFIj∆JFJj

+ · · ·



The End

Thanks.


