Bosons and Fermions

Quantum identical particles are truly the same.

Wheeler:
Positron = same
electron
backward in
time.

(in 3D. In 2D more subtle: see Anyons, ps #4)

Bosons: +1 mesons, He4, phonons, photons, gluons, W+-, Z, gravitons Fermions: -1 electrons, protons, neutrons, neutrinos, quarks.

Spin statistics theorem (relativistic QM): integer spin = boson, half-integer = Fermion

Q: Is a hydrogen atom a fermion or a boson? Composites w/even # fermions = bosons

Q'Is cesium? I=7/2 nuclear spin 5-6 electron spin

Groups and Permutation Groups

A group G is a set {g1,...,g_N} closed under a product * that is Associative: (g_i * g_j) * g_k = g_i * (g_j * g_k) has an Identity e*g_i = g_i = g_i * e has an Inverse for each element: g_i * (g_i^-1) = e

Q: Which are groups?
Integers Z under addition
Integers Z under multiplication
Rotations in SO(3)
SU(2) (spin 1/2 rotations)
Permutations of 5 particles

Q: How many elements are there in the permutation group of 5 particles?

Q: In the permutation group of three particles (e=123,132,213,231,312,321) which are even and which are odd? Do the even permutations form a subgroup?

Many particles?

Permutation $P = \{P1,...,P_N\}$ reordering integers $\{1,2,...,N\}$. sigma(P)=+1 if P even permutation (net even number of swaps), sigma(P) = -1 for odd permutation

Bosons:
$$\Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N) = \Psi(\vec{r}_2, \vec{r}_1, ..., \vec{r}_N) = \Psi(\vec{r}_P, \vec{r}_P, ..., \vec{r}_P)$$

Fermions: $\Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N) = -\Psi(\vec{r}_2, \vec{r}_1, ..., \vec{r}_N) = \sigma(P) \mathcal{H}(\vec{r}_P, ..., \vec{r}_P)$

Fermion / bose wavefunctions confined to odd / even subspace of Hilbert space.

Q: Given eigenstates for a (distinguishable particle) Hamiltonian, how to form Bose & Fermi eigenstates?

A: Since [H,P] = 0, [H,sigma(P)]=0 too: eigenstates can be chosen to be either even or odd under permutations.

Degenerate states with mixed symmetry can be symmetrized (Boson):

or antisymmetrized (Fermion):

If non-zero, some of energy-E eigenstates energy E.