Density Matrices

Describe 'mixed' spin state of Stern Gerlach oven beam

What is an entangled beam once it decoheres?

Stop using wavefunctions. Use 'density matrices'. (Matrix has room for mixtures of several quantum states)

Wavefunction
$$\mathcal{V}(x) = |\mathcal{V}\rangle$$

becomes 'pure state' density matrix $|4><4| = \rho$ Projection operator, taking component of $|\phi> a \log |4>$

Contains all physical information?

$$\begin{aligned} &\mathcal{Y}(\mathbf{x}) = \langle \mathbf{x} | \mathcal{Y} \rangle, \text{ so } \langle \mathbf{x} | \mathbf{p} | \mathbf{x}' \rangle = \langle \mathbf{x} | \mathcal{Y} \rangle \langle \mathcal{Y} | \mathbf{x}' \rangle \\ &= \mathcal{Y}(\mathbf{x}) \mathcal{Y}^{*}(\mathbf{x}') \\ &= \mathcal{Y}(\mathbf{x}) \mathcal{Y}^{*}(\mathbf{x}') \\ \langle \mathbf{x} | \mathbf{p} | \mathbf{x}' \rangle = A \mathcal{Y}(\mathbf{x}) \quad (\text{unknown } A). \\ &\text{Normalize, } \int d\mathbf{x} \quad |\kappa | \mathbf{p} | \mathbf{x}' \rangle|^{2} = \int d\mathbf{x} \left| A \right|^{2} \left| \mathcal{Y}(\mathbf{x}) \right|^{2} = |A|^{2} \\ &\frac{\langle \mathbf{x} | \mathbf{p} | \mathbf{x}' \rangle}{\int |S| \langle \mathbf{x} | \mathbf{p} | \mathbf{x}' \rangle|^{2}} = e^{i \varphi} \mathcal{Y}(\mathbf{x}), \quad \text{unknown phase } \varphi. \end{aligned}$$

Overall phase of WF is not measurable (only phase differences): Pure state density matrix has all info about state

2nd level of probability: ensemble has probabilities p_n of being in many orthogonal quantum states psi_n:

$$\rho = \sum_{n} P_n |\mathcal{U}_n \rangle \langle \mathcal{U}_n |$$

Is QM awkward with density matrices? Slightly...

Time evolution:
$$\frac{\partial \rho}{\partial t} = \sum_{n} P_n \left(\frac{\partial |\mathcal{H}_n|}{\partial t} < \mathcal{H}_n |\mathcal{H}_n > \frac{\partial \langle \mathcal{H}_n|}{\partial t} \right)$$
$$= \frac{1}{\sqrt{t}} \left(\mathcal{H}_{\rho} - \rho \mathcal{H} \right) = \frac{1}{\sqrt{t}} \left[\mathcal{H}_{\rho} \right] \quad \frac{\partial \mathcal{H}_n}{\partial t} = \left(\frac{\partial \mathcal{H}_n}{\partial t} \right)^*$$

Note: opposite of Heisenberg picture

$$\frac{\partial Q}{\partial t} = \frac{1}{ih} \left[0, H \right]$$
$$\frac{\partial Q}{\partial t} = \frac{1}{ih} \left[H, P \right] = -\frac{1}{ih} \left[P, H \right]$$

Operator Expectation: $\langle \gamma / O | \gamma \rangle = \tau_r (O_p)$ $\tau_r (M) = \sum M$

$$Tr(M) = 2M_{ii}, independent of basisWhy? Try Ix> basis
$$Tr(Op) = \sum_{p_n} Tr(O|4) < 41)$$
$$= \sum_{p_n} \int dx < x 1014 < 41x > (04)(x) \quad 4^{x}(x)$$
$$= \sum_{n} p_n \int dx \quad 4^{x}(x) \quad 0 \neq (x) \ dx$$
$$= \sum_{n} p_n < 4_n (0/4_n)$$$$

Observation by O: Weird! Not Schrodinger eqn.

Pure state $|4\rangle \rightarrow Mixture |0_{a}\rangle$ Just 'before' Pure State: $prob p_{a} = |so_{a}|\psi\rangle|^{2}$ measurement

$$p = \frac{14}{4} = \frac{1}{10} \frac{11}{10} = \frac{10}{10} \frac{10}{10} = \frac{10}{10} \frac{10}{10} = \frac{10}{10} \frac{10$$

After Observation, Mixture:

$$P' = \sum P_{\alpha} |\partial_{\alpha}\rangle \langle o_{\alpha}|$$

= $\sum |\langle o_{\alpha}| \psi \rangle|^{2} |o_{\alpha}\rangle \langle o_{\alpha}|$
$$P'_{\alpha\alpha} = \langle o_{\alpha}| \psi \rangle \langle o_{\alpha}| \psi \rangle^{*} = P_{\alpha\alpha}$$

$$P'_{\alpha\beta} = O \quad \alpha \neq \beta \ \circ$$

Observation by 'classical' instrument destroys off-diagonal 'coherence'!

Back to S-G beam! Density matrix for singlet pure state:

$$\begin{split} | \oint \langle \oint | = \rho = \\ = \frac{1}{4} (|\uparrow\rangle_{L} |\downarrow\rangle_{R} - |\downarrow\rangle_{L} |\uparrow\rangle_{R}) (\langle \uparrow |_{R} \downarrow | - \langle \downarrow |_{R} \langle \uparrow | \rangle) \\ = \frac{1}{4} |\uparrow\rangle_{L} |\downarrow\rangle_{R} \langle \uparrow |_{R} \downarrow | - \frac{1}{4} |\uparrow\rangle_{L} |\downarrow\rangle_{R} \langle \downarrow |_{R} \langle \uparrow | \rangle) \\ \text{In the basis} \quad \begin{bmatrix} \uparrow \uparrow \\ \uparrow \downarrow \\ \downarrow \uparrow \\ \downarrow \downarrow \end{bmatrix} \quad \begin{bmatrix} -\frac{1}{4} |\downarrow\rangle_{L} |\uparrow\rangle_{R} |_{L} \langle \uparrow |_{R} \langle \downarrow |_{R} \langle \uparrow | \rangle) \\ +\frac{1}{4} |\downarrow\rangle_{L} |\uparrow\rangle_{R} |_{L} \langle \downarrow |_{R} \langle \uparrow | \\ +\frac{1}{4} |\downarrow\rangle_{L} |\uparrow\rangle_{R} |_{L} \langle \downarrow |_{R} \langle \uparrow | \\ \end{bmatrix} \quad \begin{array}{c} \text{Coherence} \\ \text{between L&R} \\ \text{in off-diagonal} \\ -\frac{1}{2} \\ \end{bmatrix} \end{split}$$

As atoms separate, exposed to environment, coherence lost Or, just 'forget' about L atoms!

Implement as Partial Trace...

Agree never to measure atoms left behind in oven (L-atoms). All observables expandable in R basis:

$$0 = \sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \uparrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \downarrow L \\ n \neq e}} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \mu \in L} \left[\sum_{\substack{n \in L} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \mu \in L} \left[\sum_{\substack{n \in \mathcal{I}_{R}, \mu \in L} \left[\sum_{\substack{n \in L$$

Expectation value

$$Tr(Op) = \sum_{r_{u} \neq \mu R} \sum_{r_{u} \neq \mu R} |Op| |L_{\mu} \geq |r_{u} \geq R$$

= $\sum_{r_{u} \neq \mu R} |O| \sum_{\ell \neq \mu} |P| |L_{\nu} \geq |r_{u} >$
 $\widehat{p} = Partial Trace$
over Forgotten Info

Partial Trace

$$\tilde{\rho} = \sum_{u} \langle \mu | \rho | \mu_{u} \rangle$$

Contains all information necessary to predict R-atom observables.

Beam from S-G oven?

$$\begin{split} \rho &= \frac{1}{2} \quad |\mathcal{T}_{R}^{2}|_{2} \rangle_{R} \leq \mathcal{T}_{R}^{2} |\mathcal{T}_{R}^{2}|_{2} \rangle_{R} \leq \mathcal{T}_{R}^{2}|_{2} \rangle_{R} \leq$$

$$= \langle \uparrow | \langle \chi | \uparrow \rangle_{RR} \langle \downarrow | \langle \uparrow | \uparrow \rangle_{L} + 0 - 0 + \dots \\ + \langle \downarrow | \langle \chi | \downarrow \rangle_{RR} \langle \downarrow | \chi \rangle_{L} + 0 - 0 + \dots \\ + \langle \downarrow | \langle \chi | \downarrow \rangle_{L} + 0 - 0 + \dots \\ + \langle \downarrow | \langle \chi | \downarrow \rangle_{L} + 0 - 0 + \dots \\ + \langle \downarrow | \langle \chi | \downarrow \rangle_{RR} \langle \downarrow | \chi \rangle_{$$

= 50/50 mixture of up & down right atom spin

Unpolarized beam!

p=(b) Decoherence destroys off-diagonal terms

Observations destroy off-diagonal coherence Departing information destroys off-diagonal coherence too