Physics 6572: Graduate Quantum Mechanics I Instructor: James P. Sethna (PSB 412, sethna@lassp.cornell.edu, www.lassp.cornell.edu/ sethna, 5-5132, office hours Fri 12-1) TAs: Michael Saelim (mjs496, PSB 430, office hours Fri 2-4) and Michael Savastio (mps252, PSB 332, OH TTh 1:50-2:50)

Traditional Topics: Angular Momentum Bosons & Fermions Perturbation Theory Adiabatic Theorem, Born-Oppenheimer Scattering Theory Chemical Bonds, van der Waals

Advanced & Modern Topics: Entanglement, Qbits, Bell's Theorem Aharanov-Bohm Effect Berry's Phase Density Functional Theory, Pseudopotentials Relativity, Dirac Equation, Graphene

Things I think are important: Path Integrals, Classical Limit, WKB & Instantons Gauge Invariance & Charge Group Representation Theory Adiabatic Continuity: Resonances, Fermi Liquid Theory, Auger Dirt: Conductivity, Localization, Random Matrix Theory Overlap Catastrophes, Macroscopic Quantum Tunneling, Cats Assuming Seen:

- * Schrodinger's Eqn
- * Probability, Currents, Uncertainty
- * Eigenstates
- * Square Well
- **Harmonic Oscillator (Hermite Polynomials)
- **Double Slit
 - Hydrogen
 - **Perturbation Theory**
 - Variational Methods
- Text: Modern Quantum Mechanics (Second Edition), J. J. Sakurai & J. J. Napolitano

Perspective: Grads

- * Good at classwork, exams (selection effect)
- * Variety of quantum backgrounds
- * Need transition to research
- * Need collaborative, oral presentation exposure
- **Experiment: Group projects**
 - * Four? over semester
 - * Graded in oral exams, by peers? ["15 minute A-exam"]
 - * First two: prepare through (wacky) thought exercises,

Grading:

- * 35% homework
- * 25% group projects (?)
- * 15% In-class prelim Friday October 5
- * 25% Take-home final