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Quantum statistical mechanics governs most of solid-state physics (met-
als, semiconductors, and glasses) and parts of molecular physics and
astrophysics (white dwarfs, neutron stars). It spawned the origin of
quantum mechanics (Planck’s theory of the black-body spectrum) and
provides the framework for our understanding of other exotic quantum
phenomena (Bose condensation, superfluids, and superconductors). Ap-
plications of quantum statistical mechanics are significant components of
courses in these various subjects. We condense our treatment of this im-
portant subject into this one chapter in order to avoid overlap with other
physics and chemistry courses, and also in order to keep our treatment
otherwise accessible to those uninitiated into the quantum mysteries.

In this chapter, we assume the reader has some background in quan-
tum mechanics. We will proceed from the abstract to the concrete,
through a series of simplifications. We begin (Section 7.1) by intro-
ducing mixed states for quantum ensembles, and the advanced topic
of density matrices (for non-equilibrium quantum systems which are not
mixtures of energy eigenstates). We illustrate mixed states in Section 7.2
by solving the finite-temperature quantum harmonic oscillator. We dis-
cuss the statistical mechanics of identical particles (Section 7.3). We
then make the vast simplification of presuming that the particles are
non-interacting (Section 7.4), which leads us to the Bose–Einstein and
Fermi distributions for the filling of single-particle eigenstates. We con-
trast Bose, Fermi, and Maxwell–Boltzmann statistics in Section 7.5. We
illustrate how amazingly useful the non-interacting particle picture is for
quantum systems by solving the classic problems of black-body radia-
tion and Bose condensation (Section 7.6), and for the behavior of metals
(Section 7.7).

7.1 Mixed states and density matrices

Classical statistical ensembles are probability distributions ρ(P, Q) in
phase space. How do we generalize them to quantum mechanics? Two
problems immediately arise. First, the Heisenberg uncertainty princi-
ple tells us that one cannot specify both position and momentum for
a quantum system at the same time. The states of our quantum sys-
tem will not be points in phase space. Second, quantum mechanics
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already has probability densities; even for systems in a definite state11Quantum systems with many particles
have wavefunctions that are functions
of all the positions of all the particles
(or, in momentum space, all the mo-
menta of all the particles).

Ψ(Q) the probability is spread among different configurations |Ψ(Q)|2
(or momenta |Ψ̃(P)|2). In statistical mechanics, we need to introduce a
second level of probability, to discuss an ensemble that has probabilities
pn of being in a variety of quantum states Ψn(Q). Ensembles in quan-
tum mechanics are called mixed states; they are not superpositions of
different wavefunctions, but incoherent mixtures.22So, for example, if |V 〉 is a vertically

polarized photon, and |H〉 is a horizon-
tally polarized photon, then the super-
position (1/

√
2) (|V 〉 + |H〉) is a diag-

onally polarized photon, while the un-
polarized photon is a mixture of half
|V 〉 and half |H〉, described by the den-
sity matrix 1/2(|V 〉〈V | + |H〉〈H|). The
superposition is in both states, the mix-
ture is in perhaps one or perhaps the
other (see Exercise 7.5).

Suppose we want to compute the ensemble expectation of an operator
A. In a particular state Ψn, the quantum expectation is

〈A〉pure =
∫
Ψ∗

n(Q)AΨn(Q) d3N Q. (7.1)

So, in the ensemble the expectation is

〈A〉 =
∑

n

pn

∫
Ψ∗

n(Q)AΨn(Q) d3NQ. (7.2)

Except for selected exercises, for the rest of the book we will use mixtures
of states (eqn 7.2). Indeed, for all of the equilibrium ensembles, the
Ψn may be taken to be the energy eigenstates, and the pn either a
constant in a small energy range (for the microcanonical ensemble), or
exp(−βEn)/Z (for the canonical ensemble), or exp (−β(En − Nnµ)) /Ξ
(for the grand canonical ensemble). For most practical purposes you may
stop reading this section here, and proceed to the quantum harmonic
oscillator.

7.1.1 Advanced topic: density matrices.

What do we gain from going beyond mixed states? First, there are lots of
systems that cannot be described as mixtures of energy eigenstates. (For
example, any such mixed state will have time independent properties.)
Second, although one can define a general, time-dependent ensemble in
terms of more general bases Ψn, it is useful to be able to transform
between a variety of bases. Indeed, superfluids and superconductors
show an exotic off-diagonal long-range order when looked at in position
space (Exercise 9.8). Third, we will see that the proper generalization of
Liouville’s theorem demands the more elegant, operator-based approach.

Our goal is to avoid carrying around the particular states Ψn. Instead,
we will write the ensemble average (eqn 7.2) in terms of A and an
operator ρ, the density matrix. For this section, it is convenient to
use Dirac’s bra-ket notation, in which the mixed-state ensemble average
can be written33In Dirac’s notation, 〈Ψ|M|Φ〉 =∫

Ψ∗MΦ. 〈A〉 =
∑

n

pn〈Ψn|A|Ψn〉. (7.3)

Pick any complete orthonormal basis Φα. Then the identity operator is

1 =
∑

α

|Φα〉〈Φα| (7.4)
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and, substituting the identity (eqn 7.4) into eqn 7.3 we find

〈A〉 =
∑

n

pn〈Ψn|
(

∑

α

|Φα〉〈Φα|
)

A|Ψn〉

=
∑

n

pn

∑

α

〈Φα|AΨn〉〈Ψn|Φα〉

=
∑

α

〈ΦαA|
(

∑

n

pn|Ψn〉〈Ψn|
)
|Φα〉

= Tr(Aρ), (7.5)

where4 4The trace of a matrix is the sum of
its diagonal elements, and is indepen-
dent of what basis you write it in. The
same is true of operators; we are sum-
ming the diagonal elements Tr(M) =∑

α〈Φα|M |Φα〉.

ρ =

(
∑

n

pn|Ψn〉〈Ψn|
)

(7.6)

is the density matrix.
There are several properties we can now deduce about the density

matrix.
Sufficiency. In quantum mechanics, all measurement processes involve
expectation values of operators. Our density matrix therefore suffices to
embody everything we need to know about our quantum system.
Pure states. A pure state, with a definite wavefunction Φ, has ρpure =
|Φ〉〈Φ|. In the position basis |Q〉, this pure-state density matrix has
matrix elements ρpure(Q, Q′) = 〈Q|ρpure|Q′〉 = Φ∗(Q′)Φ(Q). Thus in
particular we can reconstruct5 the wavefunction from a pure-state den- 5In particular, since Φ is normalized

|Φ∗(Q′)|2 =
∫

dQ |ρ(Q, Q′)|2 and thus

Φ(Q) =
ρ(Q, Q′)

√∫
dQ̃ |ρ(Q̃, Q′)|2

(7.7)

up to the single phase φ∗(Q′) for any
point Q′.

sity matrix, up to an overall physically unmeasurable phase. Since our
wavefunction is normalized 〈Φ|Φ〉 = 1, we note also that the square of
the density matrix for a pure state equals itself: ρ2

pure = |Φ〉〈Φ||Φ〉〈Φ| =
|Φ〉〈Φ| = ρpure.
Normalization. The trace of a pure-state density matrix Trρpure = 1,
since we can pick an orthonormal basis with our wavefunction Φ as the
first basis element, making the first term in the trace sum one and the
others zero. The trace of a general density matrix is hence also one,
since it is a probability distribution of pure-state density matrices:

Trρ = Tr

(
∑

n

pn|Ψn〉〈Ψn|
)

=
∑

n

pnTr (|Ψn〉〈Ψn|) =
∑

n

pn = 1.

(7.8)
Canonical distribution. The canonical distribution is a mixture of
the energy eigenstates |En〉 with Boltzmann weights exp(−βEn). Hence
the density matrix ρcanon is diagonal in the energy basis:6

6Notice that the states Ψn in a general
mixture need not be eigenstates or even
orthogonal.

ρcanon =
∑

n

exp(−βEn)
Z

|En〉〈En|. (7.9)

We can write the canonical density matrix in a basis-independent form
using the Hamiltonian operator H. First, the partition function is given7

7What is the exponential of a matrix
M? We can define it in terms of a power
series, exp(M) = 1 + M + M2/2! +
M3/3! + . . . , but it is usually easier to
change basis to diagonalize M . In that
basis, any function f(M) is given by

f(ρ) =




f(ρ11) 0 0 . . .

0 f(ρ22) 0 . . .
. . .



 .

(7.10)
At the end, change back to the origi-
nal basis. This procedure also defines
log M (eqn 7.14).
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by the trace

Z =
∑

n

exp(−βEn) =
∑

n

〈En| exp(−βH)|En〉 = Tr (exp(−βH)) .

(7.11)
Second, the numerator

∑

n

|En〉 exp(−βEn)〈En| =
∑

n

|En〉 exp(−βH)〈En| = exp(−βH),

(7.12)
since H (and thus exp(−βH)) is diagonal in the energy basis. Hence

ρcanon =
exp(−βH)

Tr (exp(−βH))
. (7.13)

Entropy. The entropy for a general density matrix will be

S = −kBTr (ρ log ρ) . (7.14)

Time evolution for the density matrix. The time evolution for the
density matrix is determined by the time evolution of the pure states
composing it:88The pn are the probability that one

started in the state Ψn, and thus man-
ifestly do not change with time. ∂ρ

∂t
=

∑

n

pn

(
∂|Ψn〉
∂t

〈Ψn| + |Ψn〉
∂〈Ψn|
∂t

)
. (7.15)

Now, the time evolution of the ‘ket’ wavefunction |Ψn〉 is given by op-
erating on it with the Hamiltonian:

∂|Ψn〉
∂t

=
1
i!H|Ψn〉, (7.16)

and the time evolution of the ‘bra’ wavefunction 〈Ψn| is given by the
time evolution of Ψ∗

n(Q):

∂Ψ∗
n

∂t
=

(
∂Ψn

∂t

)∗
=

(
1
i!HΨn

)∗
= − 1

i!HΨ
∗
n, (7.17)

so since H is Hermitian, we have

∂〈Ψn|
∂t

= − 1
i! 〈Ψn|H. (7.18)

Hence99The commutator of two matrices
[A, B] = AB − BA. Notice that
eqn 7.19 is minus the formula one uses
for the time evolution of operators in
the Heisenberg representation.

∂ρ

∂t
=

∑

n

pn
1
i!

(
H|Ψn〉〈Ψn| − |Ψn〉〈Ψn|H

)
=

1
i! (Hρ − ρH)

=
1
i! [H, ρ]. (7.19)

Quantum Liouville theorem. This time evolution law 7.19 is the
quantum version of Liouville’s theorem. We can see this by using the
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equations of motion 4.1, q̇α = ∂H/∂pα, and ṗα = −∂H/∂qα and the
definition of Poisson brackets

{A, B}P =
∑

α

∂A

∂qα

∂B

∂pα
− ∂A

∂pα

∂B

∂qα
(7.20)

to rewrite Liouville’s theorem that the total time derivative is zero
(eqn 4.7) into a statement about the partial time derivative:

0 =
dρ
dt

=
∂ρ

∂t
+

∑

α

∂ρ

∂qα
q̇α +

∂ρ

∂pα
ṗα

=
∂ρ

∂t
+

∑

α

(
∂ρ

∂qα

∂H
∂pα

− ∂ρ

∂pα

∂H
∂qα

)
, (7.21)

so
∂ρ

∂t
= {H, ρ}P . (7.22)

Using the classical↔quantum correspondence between the Poisson brack-
ets and the commutator { }P ↔ (1/i!)[ ] the time evolution law 7.19 is
precisely the analogue of Liouville’s theorem 7.22.
Quantum Liouville and statistical mechanics. The classical ver-
sion of Liouville’s equation is far more compelling an argument for statis-
tical mechanics than is the quantum version. The classical theorem, you
remember, states that dρ/dt = 0; the density following a point on the
trajectory is constant, hence any time-independent density must have
ρ constant along the trajectories. If the trajectory covers the energy
surface (ergodicity), then the probability density has to be constant on
the energy surface, justifying the microcanonical ensemble.

For an isolated quantum system, this argument breaks down. The
condition that an equilibrium state must be time independent is not
very stringent. Indeed, ∂ρ/∂t = [H, ρ] = 0 for any mixture of many-
body energy eigenstates. In principle, isolated quantum systems are
very non-ergodic, and one must couple them to the outside world to
induce transitions between the many-body eigenstates needed for equi-
libration.10

10This may seem less of a concern when
one realizes just how peculiar a many-
body eigenstate of a large system re-
ally is. Consider an atom in an ex-
cited state contained in a large box.
We normally think of the atom as be-
ing in an energy eigenstate, which de-
cays after some time into a ground state
atom plus some photons. Clearly, the
atom was only in an approximate eigen-
state (or it would not decay); it is
in a resonance that is an eigenstate if
we ignore the coupling to the electro-
magnetic field. The true many-body
eigenstates of the system are weird del-
icate superpositions of states with pho-
tons being absorbed by the atom and
the atom emitting photons, carefully
crafted to produce a stationary state.
When one starts including more atoms
and other interactions, the true many-
body eigenstates are usually pretty use-
less (apart from the ground state and
the lowest excitations). Tiny interac-
tions with the outside world disrupt
these many-body eigenstates, and usu-
ally lead efficiently to equilibrium.

7.2 Quantum harmonic oscillator
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Fig. 7.1 The quantum states of the
harmonic oscillator are at equally-
spaced energies.

The harmonic oscillator is a great example of how statistical mechanics
works in quantum systems. Consider an oscillator of frequency ω. The
energy eigenvalues are En = (n + 1/2)!ω (Fig. 7.1). Hence its partition
function is a geometric series

∑
xn, which we can sum to 1/(1 − x):

Zqho =
∞∑

n=0

e−βEn =
∞∑

n=0

e−β!ω(n+1/2)

= e−β!ω/2
∞∑

n=0

(
e−β!ω

)n
= e−β!ω/2 1

1 − e−β!ω

=
1

eβ!ω/2 − e−β!ω/2
=

1
2 sinh(β!ω/2)

. (7.23)
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The average energy is

〈E〉qho = −∂ log Zqho

∂β
=

∂

∂β

[
1
2
β!ω + log

(
1 − e−β!ω

)]

= !ω
(

1
2

+
e−β!ω

1 − e−β!ω

)
= !ω

(
1
2

+
1

eβ!ω − 1

)
, (7.24)

which corresponds to an average excitation level

〈n〉qho =
1

eβ!ω − 1
. (7.25)

The specific heat is thus

0 1kBT / h
0

kB

Sp
ec

ifi
c 

H
ea

t c
V

Fig. 7.2 The specific heat for the
quantum harmonic oscillator.

cV =
∂E

∂T
= kB

(
!ω

kBT

)2 e−!ω/kBT

(
1 − e−!ω/kBT

)2 (7.26)

(Fig. 7.2). At high temperatures, e−!ω/kBT ≈ 1 − !ω/kBT , so cV →
kB as we found for the classical harmonic oscillator (and as given by
the equipartition theorem). At low temperatures, e−!ω/kBT becomes
exponentially small, so the specific heat goes rapidly to zero as the energy
asymptotes to the zero-point energy 1/2!ω. More specifically, there is an
energy gap11 !ω to the first excitation, so the probability of having any

11We call it the energy gap in solid-
state physics; it is the minimum energy
needed to add an excitation to the sys-
tem. In quantum field theory, where
the excitations are particles, we call it
the mass of the particle mc2.

excitation of the system is suppressed by a factor of e−!ω/kBT .

7.3 Bose and Fermi statistics

In quantum mechanics, identical particles are not just hard to tell apart—
their quantum wavefunctions must be the same, up to an overall phase
change,12 when the coordinates are swapped (see Fig. 7.3). In particular,

12In three dimensions, this phase
change must be ±1. In two dimen-
sions one can have any phase change,
so one can have not only fermions and
bosons but anyons. Anyons, with frac-
tional statistics, arise as excitations in
the fractional quantized Hall effect.

for bosons13 the wavefunction is unchanged under a swap, so

13Examples of bosons include mesons,
He4, phonons, photons, gluons, W±

and Z bosons, and (presumably) gravi-
tons. The last four mediate the fun-
damental forces—the electromagnetic,
strong, weak, and gravitational interac-
tions. The spin-statistics theorem (not
discussed here) states that bosons have
integer spins. Ψ(r1, r2, . . . , rN ) = Ψ(r2, r1, . . . , rN ) = Ψ(rP1 , rP2 , . . . , rPN ) (7.27)

for any permutation P of the integers 1, . . . , N . For fermions14
14Most of the common elementary par-
ticles are fermions: electrons, protons,
neutrons, neutrinos, quarks, etc. Fer-
mions have half-integer spins. Particles
made up of even numbers of fermions
are bosons.

Ψ(r1, r2, . . . , rN ) = −Ψ(r2, r1, . . . , rN ) = σ(P )Ψ(rP1 , rP2 , . . . , rPN ),
(7.28)

where σ(P ) is the sign of the permutation P .15
15A permutation {P1, P2, . . . , PN} is
just a reordering of the integers
{1, 2, . . . , N}. The sign σ(P ) of a per-
mutation is +1 if P is an even permu-
tation, and −1 if P is an odd permuta-
tion. Swapping two labels, keeping all
the rest unchanged, is an odd permuta-
tion. One can show that composing two
permutations multiplies their signs, so
odd permutations can be made by odd
numbers of pair swaps, and even per-
mutations are composed of even num-
bers of pair swaps.

The eigenstates for systems of identical fermions and bosons are a sub-
set of the eigenstates of distinguishable particles with the same Hamil-
tonian:

HΨn = EnΨn; (7.29)

in particular, they are given by the distinguishable eigenstates which
obey the proper symmetry properties under permutations. A non-symmetric
eigenstate Φ with energy E may be symmetrized to form a Bose eigen-
state by summing over all possible permutations P :

Ψsym(r1, r2, . . . , rN ) = (normalization)
∑

P

Φ(rP1 , rP2 , . . . , rPN ) (7.30)
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or antisymmetrized to form a fermion eigenstate

Ψasym(r1, r2, . . . , rN ) = (normalization)
∑

P

σ(P )Φ(rP1 , rP2 , . . . , rPN )

(7.31)
if the symmetrization or antisymmetrization does not make the sum zero.
These remain eigenstates of energy E, because they are combinations of
eigenstates of energy E.

e

e+
e e

e

e

Fig. 7.3 Feynman diagram: iden-
tical particles. In quantum mechan-
ics, two electrons (or two atoms of the
same isotope) are fundamentally iden-
tical. We can illustrate this with a peek
at an advanced topic mixing quantum
field theory and relativity. Here is a
scattering event of a photon off an elec-
tron, viewed in two reference frames;
time is vertical, a spatial coordinate is
horizontal. On the left we see two ‘dif-
ferent’ electrons, one which is created
along with an anti-electron or positron
e+, and the other which later annihi-
lates the positron. On the right we
see the same event viewed in a differ-
ent reference frame; here there is only
one electron, which scatters two pho-
tons. (The electron is virtual, mov-
ing faster than light, between the col-
lisions; this is allowed in intermediate
states for quantum transitions.) The
two electrons on the left are not only in-
distinguishable, they are the same par-
ticle! The antiparticle is also the elec-
tron, traveling backward in time.

Quantum statistical mechanics for identical particles is given by re-
stricting the ensembles to sum over symmetric wavefunctions for bosons
or antisymmetric wavefunctions for fermions. So, for example, the par-
tition function for the canonical ensemble is still

Z = Tr
(
e−βH

)
=

∑

n

e−βEn , (7.32)

but now the trace is over a complete set of many-body symmetric (or
antisymmetric) states, and the sum is over the symmetric (or antisym-
metric) many-body energy eigenstates.

7.4 Non-interacting bosons and fermions

Many-body quantum statistical mechanics is hard. We now make a huge
approximation: we will assume our quantum particles do not interact
with one another. Just as for the classical ideal gas, this will make our
calculations straightforward.

The non-interacting Hamiltonian is a sum of single-particle quantum
Hamiltonians H :

HNI =
N∑

j=1

H(pj , rj) =
N∑

j=1

!2

2m
∇2

j + V (rj). (7.33)

Let ψk be the single-particle eigenstates of H , then

Hψk(r) = εkψk(r). (7.34)

For distinguishable particles, the many-body eigenstates can be written
as a product of orthonormal single-particle eigenstates:

ΨNI
dist(r1, r2, . . . , rN ) =

N∏

j=1

ψkj (rj), (7.35)

where particle j is in the single-particle eigenstate kj . The eigenstates for
non-interacting bosons are given by symmetrizing over the coordinates
rj :

ΨNI
boson(r1, r2, . . . , rN ) = (normalization)

∑

P

N∏

j=1

ψkj (rPj ), (7.36)
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and naturally the fermion eigenstates are given by antisymmetrizing over
all N ! possible permutations, and renormalizing to one,1616This antisymmetrization can be writ-

ten as

1
√

N !

∣∣∣∣∣∣∣∣

ψk1 (r1) . . . ψk1 (rN)
ψk2 (r1) . . . ψk2 (rN)

. . . . . .
ψkN

(r1) . . . ψkN
(rN)

∣∣∣∣∣∣∣∣
(7.37)

called the Slater determinant.

ΨNI
fermion(r1, r2, . . . , rN ) =

1√
N !

∑

P

σ(P )
N∏

j=1

ψkj (rPj ). (7.38)

Let us consider two particles in orthonormal single-particle energy
eigenstates ψk and ψ$. If the particles are distinguishable, there are two
eigenstates ψk(r1)ψ$(r2) and ψk(r2)ψ$(r1). If the particles are bosons,
the eigenstate is (1/

√
2) (ψk(r1)ψ$(r2) + ψk(r2)ψ$(r1)). If the particles

are fermions, the eigenstate is (1/
√

2) (ψk(r1)ψ$(r2) − ψk(r2)ψ$(r1)).
What if the particles are in the same single-particle eigenstate ψ$? For

bosons, the eigenstate ψ$(r1)ψ$(r2) is already symmetric and normal-
ized.17 For fermions, antisymmetrizing a state where both particles are17Notice that the normalization of the

boson wavefunction depends on how
many single-particle states are multiply
occupied.

in the same state gives zero: ψ$(r1)ψ$(r2) − ψ$(r2)ψ$(r1) = 0. This is
the Pauli exclusion principle: you cannot have two fermions in the same
quantum state.18

18Because the spin of the electron can
be in two directions ±1/2, this means
that two electrons can be placed into
each single-particle spatial eigenstate.

How do we do statistical mechanics for non-interacting fermions and
bosons? Here it is most convenient to use the grand canonical ensemble
(Section 6.3); in this ensemble we can treat each eigenstate as being
populated independently from the other eigenstates, exchanging parti-
cles directly with the external bath (analogous to Fig. 6.2). The grand
partition function hence factors:

ΞNI =
∏

k

Ξk. (7.39)

The grand canonical ensemble thus allows us to separately solve the case
of non-interacting particles one eigenstate at a time.

-1 0 3
(   )/kBT

0

1

4

5

<n
>(

)

Bose-Einstein
Maxwell-Boltzmann
Fermi-Dirac

Fig. 7.4 Bose–Einstein, Maxwell–
Boltzmann, and Fermi–Dirac dis-
tributions, 〈n〉(ε). Occupation number
for single-particle eigenstates as a func-
tion of energy ε away from the chemi-
cal potential µ. The Bose–Einstein dis-
tribution diverges as µ approaches ε;
the Fermi–Dirac distribution saturates
at one as µ gets small.

Bosons. For bosons, all fillings nk are allowed. Each particle in
eigenstate ψk contributes energy εk and chemical potential −µ, so

Ξboson
k =

∞∑

nk=0

e−β(εk−µ)nk =
∞∑

nk=0

(
e−β(εk−µ)

)nk

=
1

1 − e−β(εk−µ)

(7.40)
and the boson grand partition function is

ΞNI
boson =

∏

k

1
1 − e−β(εk−µ)

. (7.41)

The grand free energy (Φ = −kBT logΞ, eqn 6.36) is a sum of single-
state grand free energies:

ΦNI
boson =

∑

k

Φboson
k =

∑

k

kBT log
(
1 − e−β(εk−µ)

)
. (7.42)

Because the filling of different states is independent, we can find out the
expected number of particles in state ψk. From eqn 6.38,

〈nk〉 = −∂Φboson
k

∂µ
= −kBT

−βe−β(εk−µ)

1 − e−β(εk−µ)
=

1
eβ(εk−µ) − 1

. (7.43)
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This is called the Bose–Einstein distribution (Fig. 7.4)

〈n〉BE =
1

eβ(ε−µ) − 1
. (7.44)

The Bose–Einstein distribution describes the filling of single-particle
eigenstates by non-interacting bosons. For states with low occupancies,
where 〈n〉 ) 1, 〈n〉BE ≈ e−β(ε−µ), and the boson populations correspond
to what we would guess naively from the Boltzmann distribution.19 The 19We will derive this from Maxwell–

Boltzmann statistics in Section 7.5.condition for low occupancies is εk − µ * kBT , which usually arises at
high temperatures20 (where the particles are distributed among a larger 20This may seem at odds with the for-

mula, but as T gets large µ gets large
and negative even faster. This hap-
pens (at fixed total number of parti-
cles) because more states at high tem-
peratures are available for occupation,
so the pressure µ needed to keep them
filled decreases.

number of states). Notice also that 〈n〉BE → ∞ as µ → εk since the
denominator vanishes (and becomes negative for µ > εk); systems of
non-interacting bosons always have µ less than or equal to the lowest of
the single-particle energy eigenvalues.21

21Chemical potential is like a pressure
pushing atoms into the system. When
the river level gets up to the height of
the fields, your farm gets flooded.

Notice that the average excitation 〈n〉qho of the quantum harmonic
oscillator (eqn 7.25) is given by the Bose–Einstein distribution (eqn 7.44)
with µ = 0. We will use this in Exercise 7.2 to argue that one can treat
excitations inside harmonic oscillators (vibrations) as particles obeying
Bose statistics (phonons).

0 1 2
Energy /

0

1
f(

)

  kBT

T = 0
Small T

Fig. 7.5 The Fermi distribution
f(ε) of eqn 7.48. At low temperatures,
states below µ are occupied, states
above µ are unoccupied, and states
within around kBT of µ are partially
occupied.

Fermions. For fermions, only nk = 0 and nk = 1 are allowed. The
single-state fermion grand partition function is

Ξfermion
k =

1∑

nk=0

e−β(εk−µ)nk = 1 + e−β(εk−µ), (7.45)

so the total fermion grand partition function is

ΞNI
fermion =

∏

k

(
1 + e−β(εk−µ)

)
. (7.46)

For summing over only two states, it is hardly worthwhile to work
through the grand free energy to calculate the expected number of par-
ticles in a state:

〈nk〉 =
∑1

nk=0 nk exp(−β(εk − µ)nk)
∑1

nk=0 exp(−β(εk − µ)nk)
=

e−β(εk−µ)

1 + e−β(εk−µ)
=

1
eβ(εk−µ) + 1

,

(7.47)
leading us to the Fermi–Dirac distribution

f(ε) = 〈n〉FD =
1

eβ(ε−µ) + 1
, (7.48)

where f(ε) is also known as the Fermi function (Fig. 7.5). Again, when
the mean occupancy of state ψk is low, it is approximately given by
the Boltzmann probability distribution, e−β(ε−µ). Here the chemical
potential can be either greater than or less than any given eigenenergy
εk. Indeed, at low temperatures the chemical potential µ separates filled
states εk < µ from empty states εk > µ; only states within roughly kBT
of µ are partially filled.
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The chemical potential µ is playing a large role in these calculations.
How do you determine it? You normally know the expected number
of particles N , and must vary µ until you reach that value. Hence µ
directly plays the role of a particle pressure from the outside world,
which is varied until the system is correctly filled.

The amazing utility of non-interacting bosons and fermions.
The classical ideal gas is a great illustration of statistical mechanics, and
does a good job of describing many gases, but nobody would suggest that
it captures the main features of solids and liquids. The non-interacting
approximation in quantum mechanics turns out to be far more powerful,
for quite subtle reasons.

For bosons, the non-interacting approximation is quite accurate in
three important cases: photons, phonons, and the dilute Bose gas.
In Section 7.6 we will study two fundamental problems involving non-
interacting bosons: black-body radiation and Bose condensation. The
behavior of superconductors and superfluids shares some common fea-
tures with that of the Bose gas.

For fermions, the non-interacting approximation would rarely seem
to be useful. Electrons are charged, and the electromagnetic repulsion
between the electrons in an atom, molecule, or material is always a major
contribution to the energy. Neutrons interact via the strong interaction,
so nuclei and neutron stars are also poor candidates for a non-interacting
theory. Neutrinos are hard to pack into a box.22 There are experiments

22Just in case you have not heard, neu-
trinos are quite elusive. A lead wall
that can stop half of the neutrinos
would be light-years thick.

on cold, dilute gases of fermion atoms, but non-interacting fermions
would seem a model with few applications.

The truth is that the non-interacting Fermi gas describes all of these
systems (atoms, metals, insulators, nuclei, and neutron stars) remark-
ably well. Interacting Fermi systems under most common circumstances
behave very much like collections of non-interacting fermions in a mod-
ified potential. The approximation is so powerful that in most circum-
stances we ignore the interactions; whenever we talk about exciting a ‘1S
electron’ in an oxygen atom, or an ‘electron–hole’ pair in a semiconduc-
tor, we are using this effective non-interacting electron approximation.
The explanation for this amazing fact is called Landau Fermi-liquid the-
ory.23

23Landau’s insight was to describe
interacting systems of fermions (e.g.,
electrons) at temperatures low com-
pared to the Fermi energy by start-
ing from the non-interacting Fermi gas
and slowly ‘turning on’ the interaction.
(The Fermi energy εF = µ(T = 0),
see Section 7.7.) Excited states of the
non-interacting gas are electrons ex-
cited into states above the Fermi en-
ergy, leaving holes behind. They evolve
in two ways when the interactions are
turned on. First, the excited elec-
trons and holes push and pull on the
surrounding electron gas, creating a
screening cloud that dresses the bare
excitations into quasiparticles. Second,
these quasiparticles develop lifetimes;
they are no longer eigenstates, but res-
onances. Quasiparticles are useful de-
scriptions so long as the interactions
can be turned on slowly enough for the
screening cloud to form but fast enough
so that the quasiparticles have not yet
decayed; this occurs for electrons and
holes near the Fermi energy, which have
long lifetimes because they can only de-
cay into energy states even closer to
the Fermi energy [9, p. 345]. Later
workers fleshed out Landau’s ideas into
a systematic perturbative calculation,
where the quasiparticles are poles in
a quantum Green’s function (see Ex-
ercise 10.9 for a classical example of
how this works). More recently, re-
searchers have found a renormalization-
group interpretation of Landau’s argu-
ment, whose coarse-graining operation
removes states far from the Fermi en-
ergy, and which flows to an effective
non-interacting Fermi gas (see Chap-
ter 12 and Exercise 12.8).

7.5 Maxwell–Boltzmann ‘quantum’
statistics

In classical statistical mechanics, we treated indistinguishable particles
as distinguishable ones, except that we divided the phase-space volume,
(or the partition function, in the canonical ensemble) by a factor of N !:

ΩMB
N =

1
N !
Ωdist

N ,

ZMB
N =

1
N !

Zdist
N . (7.49)
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This was important to get the entropy to be extensive (Section 5.2.1).
This approximation is also sometimes used in quantum statistical me-
chanics, although we should emphasize that it does not describe either
bosons, fermions, or any physical system. These bogus particles are said
to obey Maxwell–Boltzmann statistics.24 24Sometimes it is said that dis-

tinguishable particles obey Maxwell–
Boltzmann statistics. Many properties
are independent of the N ! in the de-
nominator of eqn 7.49, such as the oc-
cupancy 〈n〉 of non-interacting single-
particle eigenstates (eqn 7.60). But this
factor does matter for other proper-
ties, like the entropy of mixing and the
Helmholtz free energy, so we reserve the
term Maxwell–Boltzmann for undistin-
guished particles (Section 3.5).

What is the canonical partition function for the case of N non-inter-
acting distinguishable quantum particles? If the partition function for
one particle is

Z1 =
∑

k

e−βεk (7.50)

then the partition function for N non-interacting, distinguishable (but
otherwise similar) particles is

ZNI,dist
N =

∑

k1,k2,...,kn

e−β(εk1+εk2+···+εkN
) =

N∏

j=1




∑

kj

e−βεkj



 = Z1
N .

(7.51)
So, the Maxwell–Boltzmann partition function for non-interacting par-
ticles is

ZNI,MB
N = Z1

N/N !. (7.52)

Let us illustrate the relation between these three distributions by con-
sidering the canonical ensemble of two non-interacting particles in three
possible states of energies ε1, ε2, and ε3. The Maxwell–Boltzmann par-
tition function for such a system would be

ZNI,MB
2 =

1
2!

(
e−βε1 + e−βε2 + e−βε3

)2

=
1
2
e−2βε1 +

1
2
e−2βε2 +

1
2
e−2βε3

+ e−β(ε1+ε2) + e−β(ε1+ε3) + e−β(ε2+ε3). (7.53)

The 1/N ! fixes the weights of the singly-occupied states25 nicely; each 25More precisely, we mean those many-
body states where the single-particle
states are all singly occupied or vacant.

has weight one in the Maxwell–Boltzmann partition function. But the
doubly-occupied states, where both particles have the same wavefunc-
tion, have an unintuitive suppression by 1/2 in the sum.

There are basically two ways to fix this. One is to stop discriminating
against multiply-occupied states, and to treat them all democratically.
This gives us non-interacting bosons:

ZNI,boson
2 = e−2βε1+e−2βε2+e−2βε3+e−β(ε1+ε2)+e−β(ε1+ε3)+e−β(ε2+ε3).

(7.54)
The other way is to ‘squelch’ multiple occupancy altogether. This leads
to fermions:

ZNI,fermion
2 = e−β(ε1+ε2) + e−β(ε1+ε3) + e−β(ε2+ε3). (7.55)

Thus the Maxwell–Boltzmann distribution treats multiple occupancy
of states in an unphysical compromise between democratic bosons and
exclusive fermions.
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Here we have been comparing the different distributions within the
canonical ensemble. What about the grand canonical ensemble, which
we actually use for calculations?26 The grand partition function for26See Exercise 7.1 for more details

about the three ensembles and the four
types of statistics.

Maxwell–Boltzmann statistics is

ΞNI,MB =
∑

M

ZNI,MB
M eMβµ =

∑

M

1
M !

(
∑

k

e−βεk

)M

eMβµ

=
∑

M

1
M !

(
∑

k

e−β(εk−µ)

)M

= exp

(
∑

k

e−β(εk−µ)

)

=
∏

k

exp
(
e−β(εk−µ)

)
. (7.56)

The grand free energy is

ΦNI,MB = −kBT log ΞNI,MB =
∑

k

Φk, (7.57)

with the single-particle grand free energy

Φk = −kBT e−β(εk−µ). (7.58)

Finally, the expected27 number of particles in a single-particle eigenstate

27It is amusing to note that non-
interacting particles fill single-particle
energy states according to the same law

〈n〉 =
1

eβ(ε−µ) + c
, (7.59)

with c = −1 for bosons, c = 1 for
fermions, and c = 0 for Maxwell–
Boltzmann statistics. with energy ε is

〈n〉MB = −∂Φ
∂µ

= e−β(ε−µ). (7.60)

This is precisely the Boltzmann factor for filling the state that we expect
for non-interacting distinguishable particles; the indistinguishability fac-
tor N ! does not alter the filling of the non-interacting single-particle
states.

7.6 Black-body radiation and Bose
condensation

Fig. 7.6 Particle in a box. The
quantum states of a particle in a one-
dimensional box with periodic bound-
ary conditions are sine and cosine waves
ψn with n wavelengths in the box, kn =
2πn/L. With a real box (zero boundary
conditions at the walls) one would have
only sine waves, but at half the spac-
ing between wavevectors kn = πn/L,
giving the same net density of states.

7.6.1 Free particles in a box

For this section and the next section on fermions, we shall simplify even
further. We consider particles which are not only non-interacting and
identical, but are also free. That is, they are subject to no external
potential, apart from being confined in a box of volume L3 = V with
periodic boundary conditions.28 The single-particle quantum eigenstates28That is, the value of ψ at the

walls need not be zero (as for an in-
finite square well), but rather must
agree on opposite sides, so ψ(0, y, z) ≡
ψ(L, y, z), ψ(x, 0, z) ≡ ψ(x, L, z), and
ψ(x, y, 0) ≡ ψ(x, y, L). Periodic bound-
ary conditions are not usually seen in
experiments, but are much more natu-
ral to compute with, and the results are
unchanged for large systems.

of such a system are products of sine and cosine waves along the three
directions—for example, for any three non-negative integers ni,

ψ =
(

2
L

)3/2

cos
(

2πn1

L
x

)
cos

(
2πn2

L
y

)
cos

(
2πn3

L
z

)
. (7.61)

There are eight such states with the same energy, substituting sine for
cosine in all possible combinations along the three directions. These are
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more conveniently organized if we use the complex exponential instead
of sine and cosine:

ψk = (1/L)3/2 exp(ik · r), (7.62)

with k = (2π/L)(n1, n2, n3) and the ni can now be any integer.29 The

Fig. 7.7 k-sphere. The allowed k-
space points for periodic boundary con-
ditions form a regular grid. The points
of equal energy lie on a sphere.

29The eight degenerate states are now
given by the choices of sign for the three
integers.

allowed single-particle eigenstates form a regular square grid in the space
of wavevectors k, with an average density (L/2π)3 per unit volume of
k-space:

density of plane waves in k-space = V/8π3. (7.63)

For a large box volume V , the grid is extremely fine, and one can use
a continuum approximation that the number of states falling into a k-
space region is given by its volume times the density (eqn 7.63).30

30Basically, the continuum limit works
because the shape of the box (which af-
fects the arrangements of the allowed k
vectors) is irrelevant to the physics so
long as the box is large. For the same
reason, the energy of the single-particle
eigenstates is independent of direction;
it will be proportional to |k| for mass-
less photons, and proportional to k2 for
massive bosons and electrons (Fig. 7.7).
This makes the calculations in the fol-
lowing sections tractable.

7.6.2 Black-body radiation

Our first application is to electromagnetic radiation. Electromagnetic
radiation has plane-wave modes similar to eqn 7.62. Each plane wave
travels at the speed of light c, so its frequency is ωk = c|k|. There are
two modes per wavevector k, one for each polarization. When one quan-
tizes the electromagnetic field, each mode becomes a quantum harmonic
oscillator.

Before quantum mechanics, people could not understand the equilibra-
tion of electromagnetic radiation. The equipartition theorem predicted
that if you could come to equilibrium, each mode would have kBT of en-
ergy. Since there are immensely more wavevectors in the ultraviolet and
X-ray ranges than in the infra-red and visible,31 opening your oven door

31There are a thousand times more
wavevectors with |k| < 10k0 than for
|k| < k0. The optical frequencies and
wavevectors span roughly a factor of
two (an octave for sound), so there are
eight times as many optical modes as
there are radio and infra-red modes.

would theoretically give you a sun-tan or worse (the so-called ultravio-
let catastrophe). Experiments saw a spectrum which looked compatible
with this prediction for small frequencies, but was (fortunately) cut off
at high frequencies.

Let us calculate the equilibrium energy distribution inside our box at
temperature T . The number of single-particle plane-wave eigenstates
g(ω) dω in a small range dω is32

32We are going to be sloppy and use
g(ω) as eigenstates per unit frequency
for photons, and later we will use
g(ε) as single-particle eigenstates per
unit energy. Be warned: gω(ω) dω =
gε(!ω) d !ω, so gω = !gε.

g(ω) dω = (4πk2)
(

d|k|
dω

dω
)(

2V

(2π)3

)
, (7.64)

where the first term is the surface area of the sphere of radius k, the
second term is the thickness of the spherical shell for a small dω, and the
last is the density of single-particle plane-wave eigenstate wavevectors
times two (because there are two photon polarizations per wavevector).
Knowing k2 = ω2/c2 and d|k|/dω = 1/c, we find the density of plane-
wave eigenstates per unit frequency:

g(ω) =
V ω2

π2c3
. (7.65)

Now, the number of photons is not fixed; they can be created or de-
stroyed, so their chemical potential µ is zero.33 Their energy εk = !ωk. 33See Exercise 7.2 to derive this from

the quantum harmonic oscillator.Finally, they are to an excellent approximation identical, non-interacting
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bosons, so the number of photons per eigenstate with frequency ω is
〈n〉 = 1/(e!ω/kBT − 1). This gives us a number of photons:

(# of photons) dω =
g(ω)

e!ω/kBT − 1
dω (7.66)

and an electromagnetic (photon) energy per unit volume u(ω) given by

V u(ω) dω =
!ωg(ω)

e!ω/kBT − 1
dω

=
V !
π2c3

ω3 dω
e!ω/kBT − 1

(7.67)

(Fig. 7.8). This is Planck’s famous formula for black-body radiation.34
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Fig. 7.8 The Planck black-body ra-
diation power spectrum, with the
Rayleigh–Jeans approximation, valid
for low frequency ω.

34Why is this called black-body radia-
tion? A black surface absorbs all radi-
ation at all frequencies. In equilibrium,
the energy it absorbs at a given fre-
quency must equal the energy it emits,
otherwise it would push the system out
of equilibrium. (This is called detailed
balance, Section 8.2.) Hence, ignoring
the small surface cooling due to radia-
tion, a black body emits a thermal dis-
tribution of photons (see Exercise 7.7).

At low frequencies, we can approximate e!ω/kBT −1 ≈ !ω/kBT , yielding
the Rayleigh–Jeans formula

V uRJ(ω) dω = V

(
kBT

π2c3

)
ω2 dω

= kBTg(ω), (7.68)

just as one would expect from equipartition: kBT per classical harmonic
oscillator.

For modes with frequencies high compared to kBT/!, equipartition
no longer holds. The energy gap !ω, just as for the low-temperature
specific heat from Section 7.2, leads to an excitation probability that
is suppressed by the exponential Boltzmann factor e−!ω/kBT (eqn 7.67,
approximating 1 / (e!ω/kBT − 1) ≈ e−!ω/kBT ). Planck’s discovery that
quantizing the energy averted the ultraviolet catastrophe was the origin
of quantum mechanics, and led to his name being given to !.

7.6.3 Bose condensation

How does our calculation change when the non-interacting free bosons
cannot be created and destroyed? Let us assume that our bosons are
spinless, have mass m, and are non-relativistic, so their energy is ε =
p2/2m = −!2∇2/2m. If we put them in our box with periodic boundary
conditions, we can make the same continuum approximation to the den-
sity of states as we did in the case of black-body radiation. In eqn 7.63,
the number of plane-wave eigenstates per unit volume in k-space is
V/8π3, so the density in momentum space p = !k is V/(2π!)3. For
our massive particles dε/d|p| = |p|/m =

√
2ε/m, so the number of

plane-wave eigenstates in a small range of energy dε is

g(ε) dε = (4πp2)
(

d|p|
dε

dε
)(

V

(2π!)3

)

= (4π(2mε))
(√

m

2ε
dε

) (
V

(2π!)3

)

=
V m3/2

√
2π2!3

√
εdε, (7.69)
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where the first term is the surface area of the sphere in p-space, the
second is the thickness of the spherical shell, and the third is the density
of plane-wave eigenstates per unit volume in p-space.

Now we fill each of these single-particle plane-wave eigenstates with
an expected number given by the Bose–Einstein distribution at chemical
potential µ, 1/(e(ε−µ)/kBT −1). The total number of particles N is then
given by

N(µ) =
∫ ∞

0

g(ε)
e(ε−µ)/kBT − 1

dε. (7.70)

We must vary µ in this equation to give us the correct number of
particles N . For bosons, as noted in Section 7.4, µ cannot be larger than
the lowest single-particle eigenenergy (here ε0 = 0), so µ will always be
negative. For larger numbers of particles we raise µ up from below,
forcing more particles into each of the single-particle states. There is a
limit, however, to how hard we can push; when µ = 0 the ground state
gets a diverging number of particles.

For free bosons in three dimensions, the integral for N(µ = 0) con-
verges to a finite value.35 Thus the largest number of particles N cont

max we 35At µ = 0, the denominator of the in-
tegrand in eqn 7.70 is approximately
ε/kBT for small ε, but the numera-
tor goes as

√
ε, so the integral con-

verges at the lower end:
∫ X
0 ε−1/2 ∼

(1/2ε1/2)|X0 =
√

X/2.

can fit into our box within our continuum approximation for the density
of states is the value of eqn 7.70 at µ = 0:

N cont
max =

∫
g(ε)

eε/kBT − 1
dε

=
V m3/2

√
2π2!3

∫ ∞

0
dε

√
ε

eε/kBT − 1

= V

(√
2πmkBT

h

)3 2√
π

∫ ∞

0

√
z

ez − 1
dz

=
(

V

λ3

)
ζ(3/2). (7.71)

Here ζ is the Riemann zeta function,36 with ζ(3/2) ≈ 2.612 and λ =

36The Riemann ζ function ζ(s) =
[1/(s − 1)!]

∫ ∞
0 zs−1/(ez − 1) dz is fa-

mous for many reasons. It is related to
the distribution of prime numbers. It
is the subject of the famous unproven
Riemann hypothesis, that its zeros in
the complex plane, apart from those at
the negative even integers, all have real
part equal to 1/2.

h/
√

2πmkBT is again the thermal de Broglie wavelength (eqn 3.59).
Something new has to happen at a critical density:

N cont
max

V
=

ζ(3/2)
λ3

=
2.612 particles

deBroglie volume
. (7.72)

This has an elegant interpretation: the quantum statistics of the par-
ticles begin to dominate the behavior when they are within around a
thermal de Broglie wavelength of one another. 1

0

Fig. 7.9 Bose condensation. The
chemical potential µ is here so close to
the ground state energy ε0 that the con-
tinuum approximation to the density of
states breaks down. The ground state is
macroscopically occupied (that is, filled
by a non-zero fraction of the total num-
ber of particles N).

What happens when we try to cram more particles in? Our approx-
imation of the distribution of eigenstates as a continuum breaks down.
Figure 7.9 shows a schematic illustration of the first few single-particle
eigenvalues. When the distance between µ and the bottom level ε0 be-
comes significantly smaller than the distance between the bottom and
the next level ε1, the continuum approximation (which approximates the
filling of ε0 using an integral half-way to ε1) becomes qualitatively wrong.
The low-energy states, viewed as a continuum, cannot accommodate the
extra bosons. Instead, the lowest state absorbs all the extra particles
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added to the system beyond N cont
max .37 This is called Bose–Einstein con-37The next few states have quantitative

corrections, but the continuum approx-
imation is only off by small factors.

densation.
Usually we do not add particles at fixed temperature, instead we lower

the temperature at fixed density N/V . Bose condensation then occurs
at temperature

kBT BEC
c =

h2

2πm

(
N

V ζ(3/2)

)2/3

. (7.73)

Bose condensation was first accomplished experimentally in 1995 (see
Exercise 7.14).

Fig. 7.10 The Fermi surface for
lithium, from [29]. The Fermi energy
for lithium is 4.74 eV, with one conduc-
tion electron outside a helium closed
shell. As for most metals, the Fermi
energy in lithium is much larger than
kB times its melting point (4.74 eV =
55 000 K, melting point 453 K). Hence
it is well described by this T = 0 Fermi
surface, slightly smeared by the Fermi
function (Fig. 7.5).

Bose condensation has also long been considered the underlying prin-
ciple behind superfluidity. Liquid He4 undergoes an unusual transition
at about 2.176K to a state without viscosity; it will swirl round a circu-
lar tube for as long as your refrigeration lasts. The quantitative study
of the superfluid transition involves the interactions between the helium
atoms, and uses the scaling methods that we will introduce in Chap-
ter 12. But it is interesting to note that the Bose condensation temper-
ature for liquid He4 (with m = 6.65 × 10−24 g and volume per particle
V/N = 27.6 cm/mole) is 3.13K—quite close to the superfluid transition
temperature.

7.7 Metals and the Fermi gas

We claimed in Section 7.4 that many systems of strongly-interacting
fermions (metals, neutron stars, nuclei) are surprisingly well described
by a model of non-interacting fermions. Let us solve for the properties
of N free non-interacting fermions in a box.

Let our particles be non-relativistic and have spin 1/2. The single-
particle eigenstates are the same as those for bosons except that there
are two states (spin up, spin down) per plane wave. Hence the density
of states is given by twice that of eqn 7.69:

g(ε) =
√

2V m3/2

π2!3

√
ε. (7.74)

The number of fermions at chemical potential µ is given by integrating
g(ε) times the expected number of fermions in a state of energy ε, given
by the Fermi function f(ε) of eqn 7.48:

N(µ) =
∫ ∞

0
g(ε)f(ε) dε =

∫ ∞

0

g(ε)
e(ε−µ)/kBT + 1

dε. (7.75)

What chemical potential will give us N fermions? At non-zero temper-
ature, one must do a self-consistent calculation, but at T = 0 one can find
N by counting the number of states below µ. In the zero-temperature
limit (Fig. 7.5) the Fermi function is a step function f(ε) = Θ(µ − ε);
all states below µ are filled, and all states above µ are empty. The zero-
temperature value of the chemical potential is called the Fermi energy
εF . We can find the number of fermions by integrating up to µ = εF :38

38Equation 7.77 has an illuminating
derivation in k-space, where we fill all
states with |k| < kF . Here the Fermi
wavevector kF has energy equal to the
Fermi energy, !k2

F /2m = p2
F /2m = εF ,

and hence kF =
√

2εF m/!. The result-
ing sphere of occupied states at T = 0 is
called the Fermi sphere. The number of
fermions inside the Fermi sphere is thus
the k-space volume of the Fermi sphere
times the k-space density of states,

N =
(
(4/3)πkF

3) (
2V

(2π)3

)
=

kF
3

3π2
V,

(7.76)
equivalent to eqn 7.77.
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N =
∫ εF

0
g(ε) dε =

√
2m3/2

π2!3
V

∫ εF

0

√
ε dε =

(2εF m)3/2

3π2!3
V. (7.77)

Fig. 7.11 The Fermi surface for
aluminum, also from [29]. Aluminum
has a Fermi energy of 11.7 eV, with
three conduction electrons outside a Ne
closed shell.

We mentioned earlier that the independent fermion approximation
was startlingly useful even though the interactions are not small. Ignor-
ing the Coulomb repulsion between electrons in a metal, or the strong
interaction between neutrons in a neutron star, gives an excellent de-
scription of their actual behavior. However, our calculation above also
assumed that the electrons are free particles, experiencing no external
potential. This approximation is not particularly accurate in general; the
interactions with the atomic nuclei are important, and is primarily what
makes one material different from another. In particular, the atoms in a
crystal will form a periodic potential for the electrons.39 One can show

39Rather than using the Coulomb po-
tential for the nucleus, a better approx-
imation is given by incorporating the
effects of the inner shell electrons into
the periodic potential, and filling the
Fermi sea with the remaining conduc-
tion electrons.

that the single-particle eigenstates in a periodic potential are periodic
functions times exp(ik ·r), with exactly the same wavevectors k as in the
free fermion case. The filling of the Fermi surface in k-space is changed
only insofar as the energies of these single-particle states are no longer
isotropic. Some metals (particularly the alkali metals, like lithium in
Fig. 7.10) have roughly spherical Fermi surfaces; many (see Fig. 7.11 for
aluminum) are quite intricate, with several pieces to them [9, chapters
9–11].

Exercises
We start with two exercises on the different types of iden-
tical particle statistics: Ensembles and quantum statistics
and Phonons and photons are bosons. We then use quan-
tum mechanics to set the scale of classical statistical me-
chanics in Phase-space units and the zero of entropy, and
ask again Does entropy increase in quantum systems? In
Photon density matrices and Spin density matrix we give
elementary examples of this advanced topic.

Quantum statistical mechanics is the foundation of
many fields. We start with three examples from optics:
Light emission and absorption, Einstein’s A and B, and
Bosons are gregarious: superfluids and lasers. We pro-
vide three prototypical calculations in condensed-matter
physics: Crystal defects, Phonons on a string, and Fer-
mions in semiconductors. We provide two exercises on
Bose condensation: Bose condensation in a band and
Bose condensation: the experiment. Finally, we introduce
two primary applications to astrophysics: The photon-
dominated Universe and White dwarfs, neutron stars, and
black holes.

(7.1) Ensembles and quantum statistics.
(Quantum) ©3
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Fig. 7.12 Microcanonical three particles.

A system has two single-particle eigenfunc-
tions, with energies (measured in degrees Kelvin)
E0/kB = −10 and E2/kB = 10. Exper-
iments are performed by adding three non-
interacting particles to these two states, ei-
ther identical spin-1/2 fermions, identical spin-
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less bosons, distinguishable particles, or spinless
identical particles obeying Maxwell–Boltzmann
statistics. Please make a table for this exercise,
giving your answers for the four cases (Fermi,
Bose, Distinguishable, and Maxwell–Boltzmann)
for each of the three parts. Substantive calcula-
tions may be needed.
(a) The system is first held at constant energy.
In Fig. 7.12 which curve represents the entropy
of the fermions as a function of the energy?
Bosons? Distinguishable particles? Maxwell–
Boltzmann particles?
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Fig. 7.13 Canonical three particles.

(b) The system is now held at constant tem-
perature. In Fig. 7.13 which curve represents
the mean energy of the fermions as a function
of temperature? Bosons? Distinguishable parti-
cles? Maxwell–Boltzmann particles?
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Fig. 7.14 Grand canonical three particles.

(c) The system is now held at constant tem-
perature, with chemical potential set to hold the

average number of particles equal to three. In
Fig. 7.14, which curve represents the chemical
potential of the fermions as a function of tem-
perature? Bosons? Distinguishable? Maxwell–
Boltzmann?

(7.2) Phonons and photons are bosons. (Quan-
tum) ©3
Phonons and photons are the elementary, har-
monic excitations of the elastic and electromag-
netic fields. We have seen in Exercise 7.11
that phonons are decoupled harmonic oscillators,
with a distribution of frequencies ω. A similar
analysis shows that the Hamiltonian of the elec-
tromagnetic field can be decomposed into har-
monic normal modes called photons.
This exercise will explain why we think of
phonons and photons as particles, instead of ex-
citations of harmonic modes.
(a) Show that the canonical partition function for
a quantum harmonic oscillator of frequency ω is
the same as the grand canonical partition func-
tion for bosons multiply filling a single state with
energy !ω, with µ = 0 (apart from a shift in the
arbitrary zero of the total energy of the system).

The Boltzmann filling of a harmonic oscillator is
therefore the same as the Bose–Einstein filling
of bosons into a single quantum state, except for
an extra shift in the energy of !ω/2. This extra
shift is called the zero-point energy. The exci-
tations within the harmonic oscillator are thus
often considered as particles with Bose statis-
tics: the nth excitation is n bosons occupying
the oscillator’s quantum state.
This particle analogy becomes even more com-
pelling for systems like phonons and photons
where there are many harmonic oscillator states
labeled by a wavevector k (see Exercise 7.11).
Real, massive Bose particles like He4 in free
space have single-particle quantum eigenstates
with a dispersion relation40 εk = !2k2/2m.
Phonons and photons have one harmonic os-
cillator for every k, with an excitation energy
εk = !ωk. If we treat them, as in part (a), as
bosons filling these as single-particle states we
find that they are completely analogous to ordi-
nary massive particles. (Photons even have the
dispersion relation of a massless boson. If we
take the mass to zero of a relativistic particle,
ε =

√
m2c4 − p2c2 → |p|c = !c|k|.)

40The dispersion relation is the relationship between energy and wavevector, here εk.
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(b) Do phonons or photons Bose condense at low
temperatures? Can you see why not? Can you
think of a non-equilibrium Bose condensation of
photons, where a macroscopic occupation of a
single frequency and momentum state occurs?

(7.3) Phase-space units and the zero of entropy.
(Quantum) ©3
In classical mechanics, the entropy S = kB log Ω
goes to minus infinity as the temperature is low-
ered to zero. In quantum mechanics the entropy
per particle goes to zero,41 because states are
quantized and the ground state is the only one
populated. This is Nernst’s theorem, the third
law of thermodynamics.
The classical phase-space shell vol-
ume Ω(E) δE (eqn 3.5) has units of
((momentum)×(distance))3N . It is a little per-
verse to take the logarithm of a quantity with
units. The natural candidate with these dimen-
sions is Planck’s constant h3N ; if we measure
phase-space volume in units of h per dimension,
Ω(E) δE will be dimensionless. Of course, the
correct dimension could be a constant times h,
like !. . .
(a) Arbitrary zero of the classical entropy. Show
that the width of the energy shell δE in the defini-
tion of Ω(E) does not change the microcanonical
entropy per particle S/N = kB log(Ω(E))/N in
a large system. Show that the choice of units in
phase space does change the classical entropy per
particle.
We want to choose the units of classical phase-
space volume so that the entropy agrees with the
quantum entropy at high temperatures. How
many quantum eigenstates per unit volume of
classical phase space should we expect at high
energies? We will fix these units by matching
the quantum result to the classical one for a par-
ticular system, and then check it using a second
system. Let us start with a free particle.
(b) Phase-space density of states for a particle in
a one-dimensional box. Show, or note, that the
quantum momentum-space density of states for a
free quantum particle in a one-dimensional box
of length L with periodic boundary conditions is
L/h. Draw a picture of the classical phase space
of this box (p, x), and draw a rectangle of length

L for each quantum eigenstate. Is the phase-
space area per eigenstate equal to h, as we as-
sumed in Section 3.5?
This works also for N particles in a three-
dimensional box.
(c) Phase-space density of states for N parti-
cles in a box. Show that the density of states
for N free particles in a cubical box of volume
V with periodic boundary conditions is V N/h3N ,
and hence that the phase-space volume per state
is h3N .
Let us see if this choice of units42 also works for
the harmonic oscillator.
(d) Phase-space density of states for a harmonic
oscillator. Consider a harmonic oscillator with
Hamiltonian H = p2/2m+1/2mω2q2. Draw a pic-
ture of the energy surface with energy E, and find
the volume (area) of phase space enclosed. (Hint:
The area of an ellipse is πr1r2 where r1 and r2

are the largest and smallest radii, corresponding
to the major and minor axes.) What is the vol-
ume per energy state, the volume between En and
En+1, for the eigenenergies En = (n + 1/2)!ω?

(7.4) Does entropy increase in quantum sys-
tems? (Mathematics, Quantum) ©3
We saw in Exercise 5.7 that in classical Hamil-
tonian systems the non-equilibrium entropy
Snonequil = −kB

∫
ρ log ρ is constant in a classical

mechanical Hamiltonian system. Here you will
show that in the microscopic evolution of an iso-
lated quantum system, the entropy is also time
independent, even for general, time-dependent
density matrices ρ(t).
Using the evolution law (eqn 7.19) ∂ρ/∂t =
[H, ρ]/(i!), prove that S = Tr (ρ log ρ) is time
independent, where ρ is any density matrix.
(Hint: Show that Tr(ABC) = Tr(CAB) for any
matrices A, B, and C. Also you should know
that an operator M commutes with any func-
tion f(M).)

41If the ground state is degenerate, the entropy does not go to zero, but it typically stays finite as the number of particles N
gets big, so for large N the entropy per particle goes to zero.
42You show here that ideal gases should calculate entropy using phase-space units with h = 1. To argue this directly for inter-
acting systems usually involves semiclassical quantization [70, chapter 48, p. 170] or path integrals [39]. But it must be true.
We could imagine measuring the entropy difference between the interacting system and an ideal gas, by slowly and reversibly
turning off the interactions between the particles, measuring the entropy flow into or out of the system. Thus, setting the zero
of entropy for the ideal gas sets it for all systems.



 Copyright Oxford University Press 2006  v1.0                       

154 Quantum statistical mechanics

(7.5) Photon density matrices. (Quantum) ©3
Write the density matrix for a vertically polar-
ized photon |V 〉 in the basis where |V 〉 =

(1
0

)

and a horizontal photon |H〉 =
(0
1

)
. Write the

density matrix for a diagonally polarized photon,
(1/

√
2, 1/

√
2), and the density matrix for unpo-

larized light (note 2 on p. 136). Calculate Tr(ρ),
Tr(ρ2), and S = −kBTr(ρ log ρ). Interpret the
values of the three traces physically. (Hint: One
is a check for pure states, one is a measure of in-
formation, and one is a normalization.)

(7.6) Spin density matrix.43 (Quantum) ©3
Let the Hamiltonian for a spin be

H = −!
2
B · 'σ, (7.78)

where 'σ = (σx, σy , σz) are the three Pauli spin
matrices, and B may be interpreted as a mag-
netic field, in units where the gyromagnetic ratio
is unity. Remember that σiσj − σjσi = 2iεijkσk.
Show that any 2× 2 density matrix may be writ-
ten in the form

ρ =
1
2
(1 + p · 'σ). (7.79)

Show that the equations of motion for the den-
sity matrix i!∂ρ/∂t = [H, ρ] can be written as
dp/dt = −B × p.

(7.7) Light emission and absorption. (Quan-
tum) ©2
The experiment that Planck was studying did
not directly measure the energy density per unit
frequency (eqn 7.67) inside a box. It measured
the energy radiating out of a small hole, of area
A. Let us assume the hole is on the upper face
of the cavity, perpendicular to the z axis.
What is the photon distribution just inside the
boundary of the hole? Few photons come into
the hole from the outside, so the distribution is
depleted for those photons with vz < 0. How-
ever, the photons with vz > 0 to an excel-
lent approximation should be unaffected by the
hole—since they were emitted from far distant
walls of the cavity, where the existence of the
hole is a negligible perturbation. So, presuming
the relevant photons just inside the hole are dis-
tributed in the same way as in the box as a whole
(eqn 7.67), how many leave in a time dt?

dc   t

Fig. 7.15 Photon emission from a hole. The
photons leaving a cavity in a time dt are those within
vz dt of the hole.

As one can see geometrically (Fig. 7.15), those
photons within vz dt of the boundary will escape
in time dt. The vertical velocity vz = c cos(θ),
where θ is the photon velocity angle with re-
spect to the vertical. The Planck distribution
is isotropic, so the probability that a photon will
be moving at an angle θ is the perimeter of the
θ circle on the sphere divided by the area of the
sphere, 2π sin(θ) dθ/(4π) = 1/2 sin(θ) dθ.
(a) Show that the probability density44 ρ(vz) for
a particular photon to have velocity vz is inde-
pendent of vz in the range (−c, c), and thus is
1/2c. (Hint: ρ(vz)∆vz = ρ(θ)∆θ.)
An upper bound on the energy emitted from a
hole of area A is given by the energy in the box
as a whole (eq. 7.67) times the fraction Acdt/V
of the volume within c dt of the hole.
(b) Show that the actual energy emitted is 1/4
of this upper bound. (Hint: You will need to
integrate

∫ c

0
ρ(vz)vz dvz.)

Hence the power per unit area emitted from the
small hole in equilibrium is

Pblack(ω,T ) =
( c

4

) !
π2c3

ω3 dω
e!ω/kBT − 1

. (7.80)

Why is this called black-body radiation? Cer-
tainly a small hole in a large (cold) cavity
looks black—any light entering the hole bounces
around inside until it is absorbed by the walls.
Suppose we placed a black object—a material
that absorbed radiation at all frequencies and
angles—capping the hole. This object would ab-
sorb radiation from the cavity, rising in tem-
perature until it came to equilibrium with the
cavity—emitting just as much radiation as it ab-
sorbs. Thus the overall power per unit area emit-
ted by our black object in equilibrium at a given
temperature must equal that of the hole. This
must also be true if we place a selective filter

43Adapted from exam question by Bert Halperin, Harvard University, 1976.
44We are being sloppy again, using the same name ρ for the probability densities per unit velocity and per unit angle.
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between the hole and our black body, passing
through only particular types of photons. Thus
the emission and absorption of our black body
must agree with the hole for every photon mode
individually, an example of the principle of de-
tailed balance we will discuss in more detail in
Section 8.2.
How much power per unit area Pcolored(ω,T ) is
emitted in equilibrium at temperature T by a
red or maroon body? A white body? A mirror?
These objects are different in the fraction of in-
cident light they absorb at different frequencies
and angles a(ω, θ). We can again use the prin-
ciple of detailed balance, by placing our colored
object next to a black body and matching the
power emitted and absorbed for each angle and
frequency:

Pcolored(ω,T, θ) = Pblack(ω, T )a(ω, θ). (7.81)

Finally, we should calculate Qtot(T ), the total
power per unit area emitted from a black body
at temperature T , by integrating eqn 7.80 over
frequency.
(c) Using the fact that

∫ ∞
0

x3/(ex − 1) dx =
π4/15, show that

Qtot(T ) =

∫ ∞

0

Pblack(ω,T ) dω = σT 4 (7.82)

and give a formula for the Stefan–Boltzmann
constant σ. (σ = 5.67×10−5 erg cm−2 K−4 s−1;
use this to check your answer.)

(7.8) Einstein’s A and B. (Quantum, Optics,
Mathematics) ©3
Einstein used statistical mechanics to deduce ba-
sic truths about the interaction of light with
matter very early in the development of quantum
mechanics. In particular, he established that
stimulated emission was demanded for statistical
mechanical consistency, and found formulæ de-
termining the relative rates of absorption, spon-
taneous emission, and stimulated emission. (See
Feynman [41, I.42–5].)
Consider a system consisting of non-interacting
atoms weakly coupled to photons (electromag-
netic radiation), in equilibrium at temperature
kBT = 1/β. The atoms have two energy eigen-
states E1 and E2 with average populations N1

and N2; the relative population is given as usual

by the Boltzmann distribution
〈

N2

N1

〉
= e−β(E2−E1). (7.83)

The energy density in the electromagnetic field
is given by the Planck distribution (eqn 7.67):

u(ω) =
!
π2c3

ω3

eβ!ω − 1
. (7.84)

An atom in the ground state will absorb electro-
magnetic energy from the photons at a rate that
is proportional to the energy density u(ω) at the
excitation energy !ω = E2 − E1. Let us define
this absorption rate per atom to be 2πBu(ω).45

An atom in the excited state E2, with no electro-
magnetic stimulation, will decay into the ground
state with a rate A, emitting a photon. Einstein
noted that neither A nor B should depend upon
temperature.
Einstein argued that using just these two rates
would lead to an inconsistency.
(a) Compute the long-time average ratio N2/N1

assuming only absorption and spontaneous emis-
sion. Even in the limit of weak coupling (small A
and B), show that this equation is incompatible
with the statistical distributions 7.83 and 7.84.
(Hint: Write a formula for dN1/dt, and set it
equal to zero. Is the resulting B/A temperature
independent?)
Einstein fixed this by introducing stimulated
emission. Roughly speaking, an atom experienc-
ing an oscillating electromagnetic field is more
likely to emit photons into that mode. Einstein
found that the stimulated emission rate had to
be a constant 2πB′ times the energy density
u(ω).
(b) Write the equation for dN1/dt, including
absorption (a negative term) and spontaneous
and stimulated emission from the population N2.
Assuming equilibrium, use this equation and
eqns 7.83 and 7.84 to solve for B, and B′ in
terms of A. These are generally termed the
Einstein A and B coefficients.
Let us express the stimulated emission rate in
terms of the number of excited photons per mode
(see Exercise 7.9(a) for an alternative deriva-
tion).
(c) Show that the rate of decay of excited atoms
A + 2πB′u(ω) is enhanced by a factor of 〈n〉+ 1

45The literature uses ucycles(f) where f = ω/2π is in cycles per second, and has no factor of 2π. Since ucycles(f) df = u(ω) dω,
the absorption rate Bucycles(f) = Bu(ω) dω/df = 2πBu(ω).
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over the zero temperature rate, where 〈n〉 is the
expected number of photons in a mode at fre-
quency !ω = E2 − E1.

(7.9) Bosons are gregarious: superfluids and
lasers. (Quantum, Optics, Atomic physics) ©3
Adding a particle to a Bose condensate. Sup-
pose we have a non-interacting system of bosonic
atoms in a box with single-particle eigenstates
ψn. Suppose the system begins in a Bose-
condensed state with all N bosons in a state ψ0,
so

Ψ[0]
N (r1, . . . , rN ) = ψ0(r1) · · ·ψ0(rN ). (7.85)

Suppose a new particle is gently injected into
the system, into an equal superposition of the
M lowest single-particle states.46 That is, if it
were injected into an empty box, it would start
in state

φ(rN+1) =
1√
M

(
ψ0(rN+1) + ψ1(rN+1)

+ . . . + ψM−1(rN+1)
)
. (7.86)

The state Φ(r1, . . . rN+1) after the particle is in-
serted into the non-interacting Bose condensate
is given by symmetrizing the product function
Ψ[0]

N (r1, . . . , rN )φ(rN+1) (eqn 7.30).
(a) Calculate the symmetrized initial state of the
system with the injected particle. Show that the
ratio of the probability that the new boson enters
the ground state (ψ0) is enhanced over that of its
entering an empty state (ψm for 0 < m < M) by
a factor N + 1. (Hint: First do it for N = 1.)
So, if a macroscopic number of bosons are in one
single-particle eigenstate, a new particle will be
much more likely to add itself to this state than
to any of the microscopically populated states.
Notice that nothing in your analysis depended
on ψ0 being the lowest energy state. If we
started with a macroscopic number of particles
in a single-particle state with wavevector k (that
is, a superfluid with a supercurrent in direction
k), new added particles, or particles scattered
by inhomogeneities, will preferentially enter into
that state. This is an alternative approach to
understanding the persistence of supercurrents,

complementary to the topological approach (Ex-
ercise 9.7).
Adding a photon to a laser beam. This ‘chummy’
behavior between bosons is also the principle be-
hind lasers.47 A laser has N photons in a par-
ticular mode. An atom in an excited state emits
a photon. The photon it emits will prefer to
join the laser beam than to go off into one of its
other available modes by a factor N+1. Here the
N represents stimulated emission, where the ex-
isting electromagnetic field pulls out the energy
from the excited atom, and the +1 represents
spontaneous emission which occurs even in the
absence of existing photons.
Imagine a single atom in a state with excita-
tion energy energy E and decay rate Γ, in a cu-
bical box of volume V with periodic boundary
conditions for the photons. By the energy-time
uncertainty principle, 〈∆E ∆t〉 ≥ !/2, the en-
ergy of the atom will be uncertain by an amount
∆E ∝ !Γ. Assume for simplicity that, in a cubi-
cal box without pre-existing photons, the atom
would decay at an equal rate into any mode in
the range E − !Γ/2 < !ω < E + !Γ/2.
(b) Assuming a large box and a small decay rate
Γ, find a formula for the number of modes M per
unit volume V competing for the photon emit-
ted from our atom. Evaluate your formula for a
laser with wavelength λ = 619 nm and the line-
width Γ = 104 rad/s. (Hint: Use the density of
states, eqn 7.65.)
Assume the laser is already in operation, so there
are N photons in the volume V of the lasing ma-
terial, all in one plane-wave state (a single-mode
laser).
(c) Using your result from part (a), give a for-
mula for the number of photons per unit volume
N/V there must be in the lasing mode for the
atom to have 50% likelihood of emitting into that
mode.
The main task in setting up a laser is providing a
population of excited atoms. Amplification can
occur if there is a population inversion, where the
number of excited atoms is larger than the num-
ber of atoms in the lower energy state (definitely
a non-equilibrium condition). This is made pos-
sible by pumping atoms into the excited state by

46For free particles in a cubical box of volume V , injecting a particle at the origin φ(r) = δ(r) would be a superposition of
all plane-wave states of equal weight, δ(r) = (1/V )

∑
k eik·x. (In second-quantized notation, a†(x = 0) = (1/V )

∑
k a†

k.) We
‘gently’ add a particle at the origin by restricting this sum to low-energy states. This is how quantum tunneling into condensed
states (say, in Josephson junctions or scanning tunneling microscopes) is usually modeled.
47Laser is an acronym for ‘light amplification by the stimulated emission of radiation’.
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using one or two other single-particle eigenstates.

(7.10) Crystal defects. (Quantum, Condensed mat-
ter) ©2
A defect in a crystal has one on-center configur-
ation with energy zero, and M off-center config-
urations with energy ε, with no significant quan-
tum tunneling between the states. The Hamil-
tonian can be approximated by the (M + 1) ×
(M + 1) matrix

H =




0 0 0 · · ·
0 ε 0 · · ·
0 0 ε · · ·



 . (7.87)

There are N defects in the crystal, which can
be assumed stuck in position (and hence distin-
guishable) and assumed not to interact with one
another.
Write the canonical partition function Z(T ), the
mean energy E(T ), the fluctuations in the en-
ergy, the entropy S(T ), and the specific heat
C(T ) as a function of temperature. Plot the spe-
cific heat per defect C(T )/N for M = 6; set the
unit of energy equal to ε and kB = 1 for your
plot. Derive a simple relation between M and
the change in entropy between zero and infinite
temperature. Check this relation using your for-
mula for S(T ).
The bump in the specific heat for a two-state
system is called a Schottky anomaly.

(7.11) Phonons on a string. (Quantum, Condensed
matter) ©3
A continuum string of length L with mass per
unit length µ under tension τ has a vertical,
transverse displacement u(x, t). The kinetic en-
ergy density is (µ/2)(∂u/∂t)2 and the potential
energy density is (τ/2)(∂u/∂x)2. The string has
fixed boundary conditions at x = 0 and x = L.
Write the kinetic energy and the potential energy
in new variables, changing from u(x, t) to normal
modes qk(t) with u(x, t) =

∑
n qkn(t) sin(knx),

kn = nπ/L. Show in these variables that the sys-
tem is a sum of decoupled harmonic oscillators.
Calculate the density of normal modes per unit
frequency g(ω) for a long string L. Calculate the
specific heat of the string c(T ) per unit length in
the limit L → ∞, treating the oscillators quan-
tum mechanically. What is the specific heat of
the classical string?

Almost the same calculation, in three dimen-
sions, gives the low-temperature specific heat of
crystals.

(7.12) Semiconductors. (Quantum, Condensed
matter) ©3
Let us consider a caricature model of a doped
semiconductor [9, chapter 28]. Consider a crys-
tal of phosphorous-doped silicon, with N − M
atoms of silicon and M atoms of phosphorous.
Each silicon atom contributes one electron to the
system, and has two states at energies ±∆/2,
where ∆ = 1.16 eV is the energy gap. Each phos-
phorous atom contributes two electrons and two
states, one at −∆/2 and the other at ∆/2 − ε,
where ε = 0.044 eV is much smaller than the
gap.48 (Our model ignores the quantum me-
chanical hopping between atoms that broadens
the levels at ±∆/2 into the conduction band and
the valence band. It also ignores spin and chem-
istry; each silicon really contributes four elec-
trons and four levels, and each phosphorous five
electrons and four levels.) To summarize, our
system has N + M spinless electrons (maximum
of one electron per state), N valence band states
at energy −∆/2, M impurity band states at en-
ergy ∆/2−ε, and N−M conduction band states
at energy ∆/2.
(a) Derive a formula for the number of electrons
as a function of temperature T and chemical po-
tential µ for the energy levels of our system.
(b) What is the limiting occupation probability
for the states as T → ∞, where entropy is max-
imized and all states are equally likely? Using
this, find a formula for µ(T ) valid at large T ,
not involving ∆ or ε.
(c) Draw an energy level diagram showing the
filled and empty states at T = 0. Find a formula
for µ(T ) in the low-temperature limit T → 0,
not involving the variable T . (Hint: Balance
the number of holes in the impurity band with
the number of electrons in the conduction band.
Why can you ignore the valence band?)
(d) In a one centimeter cubed sample, there are
M = 1016 phosphorous atoms; silicon has about
N = 5×1022 atoms per cubic centimeter. Find µ
at room temperature (1/40 eV) from the formula
you derived in part (a). (Probably trying various
µ is easiest; set up a program on your calculator

48The phosphorous atom is neutral when both of its states are filled; the upper state can be thought of as an electron bound
to a phosphorous positive ion. The energy shift ε represents the Coulomb attraction of the electron to the phosphorous ion; it
is small because the dielectric constant is large semiconductor [9, chapter 28].
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or computer.) At this temperature, what fraction
of the phosphorous atoms are ionized (have their
upper energy state empty)? What is the density
of holes (empty states at energy −∆/2)?
Phosphorous is an electron donor, and our sam-
ple is doped n-type, since the dominant carriers
are electrons; p-type semiconductors are doped
with holes.

(7.13) Bose condensation in a band. (Atomic
physics, Quantum) ©2
The density of single-particle eigenstates g(E)
of a system of non-interacting bosons forms a
band; the eigenenergies are confined to a range
Emin < E < Emax, so g(E) is non-zero in this
range and zero otherwise. The system is filled
with a finite density of bosons. Which of the
following is necessary for the system to undergo
Bose condensation at low temperatures?
(a) g(E)/(eβ(E−Emin)+1) is finite as E → E−

min.
(b) g(E)/(eβ(E−Emin) − 1) is finite as E →
E−

min.
(c) Emin ≥ 0.
(d)

∫ E
Emin

g(E′)/(E′ − Emin) dE′ is a convergent
integral at the lower limit Emin.
(e) Bose condensation cannot occur in a system
whose states are confined to an energy band.

(7.14) Bose condensation: the experiment.
(Quantum, Atomic physics) ©4
Anderson, Ensher, Matthews, Wieman and Cor-
nell in 1995 were able to get a dilute gas of
rubidium-87 atoms to Bose condense [4].
(a) Is rubidium-87 (37 protons and electrons, 50
neutrons) a boson or a fermion?
(b) At their quoted maximum number density of
2.5 × 1012/cm3, at what temperature T predict

c do
you expect the onset of Bose condensation in free
space? They claim that they found Bose conden-
sation starting at a temperature of Tmeasured

c =
170 nK. Is that above or below your estimate?
(Useful constants: h = 6.6262 × 10−27 erg s,
mn ∼ mp = 1.6726 × 10−24 g, kB = 1.3807 ×
10−16 erg/K.)
The trap had an effective potential energy
that was harmonic in the three directions, but
anisotropic with cylindrical symmetry. The fre-
quency along the cylindrical axis was f0 =120 Hz
so ω0 ∼ 750 Hz, and the two other frequen-
cies were smaller by a factor of

√
8: ω1 ∼

265 Hz. The Bose condensation was observed
by abruptly removing the trap potential,49 and

letting the gas atoms spread out; the spreading
cloud was imaged 60ms later by shining a laser
on them and using a CCD to image the shadow.

Fig. 7.16 Bose–Einstein condensation at 400,
200, and 50 nano-Kelvin. The pictures are spatial
distributions 60ms after the potential is removed; the
field of view of each image is 200 µm×270 µm. The
left picture is roughly spherically symmetric, and is
taken before Bose condensation; the middle has an el-
liptical Bose condensate superimposed on the spher-
ical thermal background; the right picture is nearly
pure condensate. From [4]. Thanks to the Physics
2000 team for permission to reprint this figure.

For your convenience, the ground state of
a particle of mass m in a one-dimensional
harmonic oscillator with frequency ω is
ψ0(x) = (mω/π!)1/4 e−mωx2/2! , and the
momentum-space wavefunction is ψ̃0(p) =
(1/(πm!ω))1/4 e−p2/2m!ω . In this 3D problem
the solution is a product of the corresponding
Gaussians along the three axes.
(c) Will the momentum distribution be broader
along the high-frequency axis (ω0) or one of the
low-frequency axes (ω1)? Assume that you may
ignore the small width in the initial position dis-
tribution, and that the positions in Fig. 7.16
reflect the velocity distribution times the time
elapsed. Which axis, x or y in Fig. 7.16, corre-
sponds to the high-frequency cylinder axis? What
anisotropy does one expect in the momentum dis-
tribution at high temperatures (classical statisti-
cal mechanics)?
Their Bose condensation is not in free space; the
atoms are in a harmonic oscillator potential. In
the calculation in free space, we approximated

49Actually, they first slowly reduced it by a factor of 75 and then abruptly reduced it from there; let us ignore that complication.
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the quantum states as a continuum density of
states g(E). That is only sensible if kBT is large
compared to the level spacing near the ground
state.
(d) Compare !ω to kBT at the Bose con-
densation point Tmeasured

c in their experiment.
(! = 1.05459 × 10−27 erg s; kB = 1.3807 ×
10−16 erg/K.)
For bosons in a one-dimensional harmonic oscil-
lator of frequency ω0, it is clear that g(E) =
1/(!ω0); the number of states in a small range
∆E is the number of !ω0s it contains.
(e) Compute the density of single-particle eigen-
states

g(E) =

∫ ∞

0

dε1 dε2 dε3 g1(ε1)g2(ε2)g3(ε3)

× δ (E − (ε1 + ε2 + ε3)) (7.88)

for a three-dimensional harmonic oscillator, with
one frequency ω0 and two of frequency ω1. Show
that it is equal to 1/δE times the number of
states in 'ε-space between energies E and E+δE.
Is the thickness of this triangular slab equal to
δE?
Their experiment has N = 2 × 104 atoms in the
trap as it condenses.
(f) By working in analogy with the calculation in
free space, find the maximum number of atoms
that can occupy the three-dimensional harmonic
oscillator potential in part (e) without Bose con-
densation at temperature T . (You will want to
know

∫ ∞
0

z2/(ez−1) dz = 2 ζ(3) = 2.40411.) Ac-
cording to your calculation, at what temperature
THO

c should the real experimental trap have Bose
condensed?

(7.15) The photon-dominated Universe.50 (As-
trophysics) ©3
The Universe is currently not in equilibrium.
However, in the microwave frequency range it is
filled with radiation that is precisely described
by a Planck distribution at 2.725 ± 0.001 K
(Fig. 7.17).
The microwave background radiation is a win-
dow back to the decoupling time, about 380 000
years after the Big Bang,51 when the temper-
ature dropped low enough for the protons and
electrons to combine into hydrogen atoms. Light
does not travel far in ionized gases; it accelerates

the charges and scatters from them. Hence, be-
fore this time, our Universe was very close to an
equilibrium soup of electrons, nuclei, and pho-
tons.52 The neutral atoms after this time were
transparent enough that almost all of the pho-
tons traveled for the next 13 billion years directly
into our detectors.
These photons in the meantime have greatly in-
creased in wavelength. This is due to the sub-
sequent expansion of the Universe. The initial
Planck distribution of photons changed both be-
cause of the Doppler effect (a red-shift because
the distant gas that emitted the photon appears
to be moving away from us) and because the
photons are diluted into a larger volume. The
Doppler shift both reduces the photon energy
and squeezes the overall frequency range of the
photons (increasing the number of photons per
unit frequency).

0 20Frequency (cm-1)
0

400
M

Jy
/sr

Fig. 7.17 Planck microwave background radi-
ation, as measured by the COBE satellite [42]. The
units on the axes are those used in the original paper:
inverse centimeters instead of frequency (related by
the speed of light) on the horizontal axis and Mega-
Janskys/steridian for the vertical axis (1 MegaJansky
= 10−20 Wm−2 Hz−1). The curve is the Planck dis-
tribution at 2.725K.

One might ask why the current microwave back-
ground radiation is thermal (Fig. 7.17), and why
it is at such a low temperature . . .
(a) If the side of the box L and the wavelengths
of the photons in the box are all increased by a
factor f , what frequency ω′ will result from a
photon with initial frequency ω? If the original
density of photons is n(ω), what is the density
of photons n′(ω′) after the expansion? Show that

50This exercise was developed with the help of Dale Fixsen and Eanna Flanagan.
51Numbers quoted were reasonable estimates when the exercise was written. See also [143] for a history of the early Universe.
52The neutrinos fell out of equilibrium somewhat earlier.
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Planck’s form for the number of photons per unit
frequency per unit volume

ω2

π2c3(e!ω/kBT − 1)
(7.89)

(from eqn 7.66) is preserved, except for a shift in
temperature. What is the new temperature T ′, in
terms of the original temperature T and the ex-
pansion factor f?
This is as expected; an adiabatic expansion
leaves the system in equilibrium, but at a dif-
ferent temperature.
(b) How many microwave background photons
are there per cubic centimeter? How does this
compare to the average atomic density in the
Universe (nmatter ∼ 2.5 × 10−7 atoms/cm3)?
(Note

∫ ∞
0

x2/(ex − 1) dx = 2ζ(3) ≈ 2.404. Use-
ful constants: ! = 1.05 × 10−27 erg s, c = 3 ×
1010 cm/s, and kB = 1.38 × 10−16 erg/K.)
Cosmologists refer to the current Universe as
photon dominated, because there are currently
many more photons than atoms.
We can also roughly estimate the relative contri-
butions of photons and atoms to other properties
of the Universe.
(c) Calculate formulæ for the entropy S, the in-
ternal energy E, and the pressure P for the pho-
ton gas in a volume V and temperature T . For
simplicity, write them in terms of the Stefan–
Boltzmann constant53 σ = π2k4

B/60!3c2. Ig-
nore the zero-point energy in the photon modes54

(which otherwise would make the energy and
pressure infinite, even at zero temperature).
(Hint: You will want to use the grand free en-
ergy Φ for the photons. For your information,∫ ∞
0

x3/(ex − 1) dx = π4/15 = −3
∫ ∞
0

x2 log(1 −
e−x) dx, where the last integral can be integrated
by parts to get the first integral.)
(d) Calculate formulæ for the entropy, mass-
energy55 density, and pressure for an ideal gas
of hydrogen atoms at density nmatter and the
same volume and temperature. Can we ignore
quantum mechanics for the atomic gas? As-
semble your results from parts (c) and (d) into
a table comparing photons to atoms, with four
columns giving the two analytical formulæ and

then numerical values for V = 1 cm3, the cur-
rent microwave background temperature, and the
current atom density. Which are dominated
by photons? By atoms? (Hint: You will
want to use the Helmholtz free energy A for
the atoms. More useful constants: σ = 5.67 ×
10−5 erg cm−2 K−4 s−1, and mH ≈ mp = 1.673×
10−24 g.)
Before the decoupling time, the coupled light-
and-matter soup satisfied a wave eqn [60]:

ρ
∂2Θ
∂t2

= B∇2θ. (7.90)

Here Θ represents the local temperature fluctu-
ation ∆T/T . The constant ρ is the sum of three
contributions: the matter density, the photon
energy density E/V divided by c2, and a contri-
bution P/c2 due to the photon pressure P (this
comes in as a component in the stress-energy ten-
sor in general relativity).
(e) Show that the sum of the two photon con-
tributions to the mass density is proportional to
E/(c2V ). What is the constant of proportional-
ity?
The constant B in our wave eqn 7.90 is the bulk
modulus: B = −V (∂P/∂V )|S .56 At decoupling,
the dominant contribution to the pressure (and
to B) comes from the photon gas.
(f) Write P as a function of S and V (eliminat-
ing T and E), and calculate B for the photon
gas. Show that it is proportional to the photon
energy density E/V . What is the constant of
proportionality?
Let R be the ratio of ρmatter to the sum of the
photon contributions to ρ from part (e).
(g) What is the speed of sound in the Universe
before decoupling, as a function of R and c?
(Hint: Compare with eqn 10.78 in Exercise 10.1
as a check for your answer to parts (e)–(g).)
Exercise 10.1 and the ripples-in-fluids animation
at [137] show how this wave equation explains
much of the observed fluctuations in the mi-
crowave background radiation.

53The Stefan–Boltzmann law says that a black body radiates power σT 4 per unit area, where σ is the Stefan–Boltzmann
constant; see Exercise 7.7.
54Treat them as bosons (eqn 7.42) with µ = 0 rather than as harmonic oscillators (eqn 7.23).
55That is, be sure to include the mc2 for the hydrogen atoms into their contribution to the energy density.
56The fact that one must compress adiabatically (constant S) and not isothermally (constant T ) is subtle but important (Isaac
Newton got it wrong). Sound waves happen too fast for the temperature to equilibrate. Indeed, we can assume at reasonably
long wavelengths that there is no heat transport (hence we may use the adiabatic modulus). All this is true both for air and
for early-Universe photon gasses.
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(7.16) White dwarfs, neutron stars, and black
holes. (Astrophysics, Quantum) ©3
As the energy sources in large stars are con-
sumed, and the temperature approaches zero,
the final state is determined by the competition
between gravity and the chemical or nuclear en-
ergy needed to compress the material.
A simplified model of ordinary stellar matter is
a Fermi sea of non-interacting electrons, with
enough nuclei to balance the charge. Let us
model a white dwarf (or black dwarf, since we as-
sume zero temperature) as a uniform density of
He4 nuclei and a compensating uniform density
of electrons. Assume Newtonian gravity. As-
sume the chemical energy is given solely by the
energy of a gas of non-interacting electrons (fill-
ing the levels to the Fermi energy).
(a) Assuming non-relativistic electrons, calculate
the energy of a sphere with N zero-temperature
non-interacting electrons and radius R.57 Cal-
culate the Newtonian gravitational energy of a
sphere of He4 nuclei of equal and opposite charge
density. At what radius is the total energy min-
imized?
A more detailed version of this model was stud-
ied by Chandrasekhar and others as a model
for white dwarf stars. Useful numbers: mp =
1.6726 × 10−24 g, mn = 1.6749 × 10−24 g, me =
9.1095 × 10−28 g, ! = 1.05459 × 10−27 erg s,
G = 6.672 × 10−8 cm3/(g s2), 1 eV = 1.60219 ×
10−12 erg, kB = 1.3807 × 10−16 erg/K, and c =
3 × 1010 cm/s.
(b) Using the non-relativistic model in part (a),
calculate the Fermi energy of the electrons in a
white dwarf star of the mass of the Sun, 2 ×
1033 g, assuming that it is composed of helium.
(i) Compare it to a typical chemical binding en-
ergy of an atom. Are we justified in ignoring

the electron–electron and electron–nuclear inter-
actions (i.e., chemistry)? (ii) Compare it to the
temperature inside the star, say 107 K. Are we
justified in assuming that the electron gas is de-
generate (roughly zero temperature)? (iii) Com-
pare it to the mass of the electron. Are we
roughly justified in using a non-relativistic the-
ory? (iv) Compare it to the mass difference be-
tween a proton and a neutron.
The electrons in large white dwarf stars are rel-
ativistic. This leads to an energy which grows
more slowly with radius, and eventually to an
upper bound on their mass.
(c) Assuming extremely relativistic electrons with
ε = pc, calculate the energy of a sphere of non-
interacting electrons. Notice that this energy
cannot balance against the gravitational energy
of the nuclei except for a special value of the
mass, M0. Calculate M0. How does your M0

compare with the mass of the Sun, above?
A star with mass larger than M0 continues to
shrink as it cools. The electrons (see (iv) in
part (b) above) combine with the protons, stay-
ing at a constant density as the star shrinks into
a ball of almost pure neutrons (a neutron star,
often forming a pulsar because of trapped mag-
netic flux). Recent speculations [107] suggest
that the ‘neutronium’ will further transform into
a kind of quark soup with many strange quarks,
forming a transparent insulating material.
For an even higher mass, the Fermi repulsion
between quarks cannot survive the gravitational
pressure (the quarks become relativistic), and
the star collapses into a black hole. At these
masses, general relativity is important, going be-
yond the purview of this text. But the basic
competition, between degeneracy pressure and
gravity, is the same.

57You may assume that the single-particle eigenstates have the same energies and k-space density in a sphere of volume V as
they do for a cube of volume V ; just like fixed versus periodic boundary conditions, the boundary does not matter to bulk
properties.
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