import sys sys.path.append("K:\\Simulations\\Lmc\\LmcPython") import Lmc dir(Lmc) sim = Lmc.IsingSimulation() sim.SetHeightWidth(512,512) # Bigger for better averages correlationObserver = Lmc.CorrelationObserverFFT() sim.Attach(correlationObserver) sim.Sweep() sim.Notify() # Make sure your X-windows manager is running. # JPS home: sys.path.append("K:\\Simulations\\xmgr") # Your path here import xmgr # Early in the semester, we needed this voodoo to get xmgr to work # File -> Open, K:\Simulations\xmgr\xmgr.py, then close it graph = xmgr.xmgr() corr = [] for r in xrange(0,sim.GetWidth()/2): corr.append([r,correlationObserver.Correlation(r)]) graph.PlotSet(0,corr) # Measure correlation functions after times 2^n, # plot them corrlist = [corr] def copyCorr(): corr = [] for r in xrange(0,sim.GetWidth()/2): corr.append([r,correlationObserver.Correlation(r)]) return corr sim.Sweep() sim.Notify() copyCorr() corrlist.append(copyCorr()) # corrlist[1] is correlation at t=2^1 sim.GetTime() graph.PlotSet(1,corrlist[1]) n = 2 # LOOP over times 2^n for i in xrange(0,2**(n-1)): sim.Sweep() sim.Notify() sim.GetTime() corrlist.append(copyCorr()) graph.PlotSet(n,corrlist[n]) n = n+1 # Repeat until too time-consuming, # or until the correlations extend to the center # Rescale the correlation functions by t^-alpha # Remember, t is 2^n # Try various alpha until you get a good collapse alpha = -XXX # Copy rescaledCorr to new list # There must be a better way! def CopyList(listOrig,depth): if depth == 1: return listOrig[:] else: listNew = [] for item in listOrig: listNew.append(CopyList(item,depth-1)) return listNew rescaledCorr = CopyList(corrlist,3) for i in xrange(0,len(rescaledCorr)): for r in xrange(0,len(rescaledCorr[i])): rescaledCorr[i][r][0] = rescaledCorr[i][r][0]*2**(alpha*i) graph.PlotSets(rescaledCorr[0],rescaledCorr[1],rescaledCorr[2], \ rescaledCorr[3],rescaledCorr[4],rescaledCorr[5], \ rescaledCorr[6],rescaledCorr[7],rescaledCorr[8], \ rescaledCorr[9]) # You'll need to zoom in to see the collapse: use the magnifying-glass button
Statistical Mechanics: Entropy, Order Parameters, and Complexity,
now available at
Oxford University Press
(USA,
Europe).