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Two-dimensional dry foams coarsen according to the von Neumann law as dA/

dt∝ (n − 6) where n is the number of sides of a bubble with area A. Such foams

reach a self-similar scaling state where area and side-number distributions are

stationary. Combining self-similarity with the von Neumann law, we derive time

derivatives of moments of the bubble area distribution and a relation

connecting area moments with averages of the side-number distribution

that are weighted by powers of bubble area. To test these predictions, we

collect and analyze high precision image data for a large number of bubbles

squashed between parallel acrylic plates and allowed to coarsen into the self-

similar scaling state. We find good agreement for moments ranging from 2–20.

KEYWORDS

foam, statistical self-similarity, coarsening, topology, size-topology relation

1 Introduction

Dry two-dimensional foams can be made by squashing bubbles between parallel

plates and letting most of the liquid drain out. Viewed from normal to the plates,

neighboring bubbles are separated by thin soap films that are circular arcs and

that—according to Plateau’s Laws—meet at 120° at 3-fold vertices (Weaire and Rivier,

1984; Weaire and Hutzler, 1999; Cantat et al., 2013; Langevin, 2020). As a consequence,

Euler’s rule implies that the average number of sides is 〈n〉 = 6 if the sample is sufficiently

large. It is commonly observed that bubbles with more sides n tend to be bigger. Various

size-topology relations have been proposed to quantify this behavior (Rivier, 1985; Chiu,

1995). One of the oldest is Lewis’s Law (Lewis, 1930), which states that the area of n sided-

bubbles is a linear function of n. Desch’s Law analogously holds that the perimeter of n-

sided bubbles is linear in n. These “laws” are actually empirical approximations, found to

hold to varying degrees and with different linear relations for different kinds of cellular

structures, e.g., plant and animal tissues or foams or grains in an alloy. For foams,

systematic deviations from the Lewis and Desch laws were recently observed and

accounted for by a simplified “granocentric” model (Newhall et al., 2012) in which a

central particle is uniformly surrounded by n equidistant bubbles of the same size (Roth

et al., 2013).

Even in the absence of soap film rupture and drainage of the liquid between bubbles,

foams coarsen with time. Locally, gas diffuses between neighboring bubbles according to
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their pressure difference. This tends tomake small bubbles shrink

and large bubbles grow. Based on little more than geometry, von

Neumann’s law (von Neumann, 1952; Mullins, 1956; Stavans,

1993a) states that the area Ai of a bubble i with ni sides changes at

rate

dAi

dt
� Ko ni − 6( ) (1)

where Ko is a materials constant proportional to surface tension,

the solubility and diffusivity of the gas, and inversely

proportional to film thickness. This law is exact, no matter

what the sizes and shapes of the neighboring bubbles. If an

initial foam sample is not too pathological or small, it will evolve

into a statistically self-similar scaling state where the side-

number distribution and dimensionless ratios of bubble area

moments are all independent of time (Mullins, 1986) (see Refs.

Glazier et al. (1987), Marder (1987), Beenakker (1988), Weaire

and Lei (1990), Glazier et al. (1990), Herdtle and Aref (1992) on

the approach to the scaling state, and Refs. Stavans (1990), Roth

et al. (2013) on the demonstration of scaling, for dry 2d foams).

In such a state, the von Neumann law can be used to show that

the average coarsening rate is constant and equal to

d〈A〉
dt

� 2Ko
〈A〉2
〈A2〉 〈〈n〉〉 − 6[ ] (2)

where 〈A〉 � (∑N
i�1Ai)/N � Atot/N is the average bubble size, N

is the total number of bubbles, Atot is the sample area,

〈A2〉 � (∑N
i�1Ai

2)/N, 〈〈n〉〉 = ∑nF(n) is the area-weighted

average side number, and F(n) is the area-weighted side

number distribution—i.e., the fraction of sample area inside

n-sided bubbles (Roth et al., 2013). While the probability P(n)

that a randomly-chosen bubble is n-sided has been widely

studied, the probability F(n) that a randomly chosen point is

inside an n-sided bubble is more directly important for the

average coarsening behavior. According to Eq. 2, the average

coarsening rate depends on both bubble sizes, through the

moment ratio 〈A2〉/〈A〉2, as well as on topology, through 〈〈n〉〉.
In this paper, we generalize three ways upon Eq. 2, and we use

one of the results to predict a generalized size-topology relation.

Then we make experimental tests.

2 Predictions

To assist with derivations, we use single angle brackets to

denote numeric averages and double angle brackets to denote

weighted averages. Specifically, we write the average p-th power

of bubble area as

〈Ap〉 � 1
N

∑N
i�1

Ai
p (3)

And we write the Ap-weighted average side numbers as

〈〈n〉〉p � ∑N
i�1niAi

p

∑N
i�1Ai

p
(4)

Note that 〈〈n〉〉1 is the area-weighted average side number

〈〈n〉〉 used in Eq. 2, and 〈〈n〉〉0 = 〈n〉 = 6 is the familiar numeric

average size number.

For our first generalization of Eq. 2, we begin by writing and

rearranging the following identity:

〈A〉p � 〈A〉p ×
〈A〉
〈A〉 ×

∑Ai
p

∑Ai
p ×

∑Ai
p+1

N〈Ap+1〉 (5)

� 1
N〈A〉 ×

〈A〉p+1
〈Ap+1〉 ×

∑Ai
p

∑Ai
p ×∑Ai

p+1 (6)

where the sums run over all bubbles, from i = 1 to i =N. Note that

the first three terms in Eq. 6 are all independent of time: The first

is the reciprocal of sample area, the second is constant when the

sample is in a self-similar scaling state, and the third equals one.

Therefore, it is straightforward to differentiate both sides with

respect to time. Using von Neumann’s law on the fourth term on

the right hand side, then recognizing ∑Ai
p/N � 〈Ap〉 and

rearranging, gives

p〈A〉p−1d〈A〉
dt

� 〈A〉p〈Ap〉
〈Ap+1〉

∑ p + 1( )Ai
pKo ni − 6( )

∑Ai
p (7)

which simplifies to the following generalization of Eq. 2:

d〈A〉
dt

� Ko 1 + 1
p

( ) 〈A〉〈Ap〉
〈Ap+1〉 〈〈n〉〉p − 6[ ] (8)

This holds for any nonzero value of p, not just integers. Near

p = 0 it implies d〈A〉/dt =Ko limp→0[〈〈n〉〉p − 6]/p, which proves

〈n〉 = 6 for steady state without use of Euler’s rule. Since the left

hand side of Eq. 8 is the same for any value of p, we may equate

the right hand sides evaluated at p and at p → q. This gives the

final result

p q + 1( )〈Ap+1〉〈Aq〉
q p + 1( )〈Ap〉〈Aq+1〉 � 〈〈n〉〉p − 6

〈〈n〉〉q − 6
(9)

relating bubbles sizes, on the left, and network topology, on the

right, which holds in the self-similar scaling state. It will be tested

experimentally in later sections for the special case q = p − 1,

where it can be rewritten as

〈Ap〉2
〈Ap−1〉〈Ap+1〉

〈〈n〉〉p − 6

〈〈n〉〉p−1 − 6
� p2

p2 − 1
(10)

Here, the product of size and topology ratios decrease

towards one as p increases towards infinity. As per Eq. 8, it

holds for general values of p. Note that both sides vanish in the

limit p → 0 and both sides diverge in the limit p → 1 owing to

〈〈n〉〉0 ≡〈n〉 = 6. We note, too, that Eq. 9 can be derived from

Eq. 10.

For a second generalization of Eq. 2, we consider the time

derivative of 〈Ap〉 � 1
N∑Ai

p. Substituting 1/N = 〈A〉/Atot and
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using the product differentiation rule, then von Neumann’s law,

gives

d〈Ap〉
dt

� 1
Atot

d〈A〉
dt

∑Ai
p + 〈A〉

Atot

d

dt
∑Ai

p (11)

� 〈Ap〉
〈A〉

d〈A〉
dt

+ 1
N

∑pAi
p−1Ko ni − 6( ) (12)

� 〈Ap〉
〈A〉

d〈A〉
dt

+ pKo〈Ap−1〉 〈〈n〉〉p−1 − 6[ ] (13)

For p = 1 these expressions reduce to d〈A〉/dt = d〈A〉/dt and
hence give nothing new. For p > 1 we may simplify further by

assuming that the foam is in a self-similar scaling state, which

permits d〈A〉/dt to be evaluated with Eq. 8 at p → p − 1. This

gives the final result:

d〈Ap〉
dt

� Ko
p2

p − 1
〈Ap−1〉 〈〈n〉〉p−1 − 6[ ] (14)

which grows in proportion to tp−1 and holds for p > 1.

For the third and perhaps prettiest generalization of Eq. 2, we

compute the time derivative of 〈Ap+1〉/〈Ap〉 � ∑Ai
p+1/∑Ai

p.

This quantity has units of area, so in the scaling state its time

derivative should be constant. Indeed, using the quotient rule

with von Neumann’s law, then simplifying with Eq. 10, gives

d

dt

〈Ap+1〉
〈Ap〉 � Ko 1 + 1

p
( ) 〈〈n〉〉p − 6[ ] (15)

This result can be alternatively derived using Eq. 14. To test if

the foam is in a scaling state, experimental data for average

bubble growth should collapse to a line of slope Ko if plotted as

〈Ap+1〉/〈Ap〉 vs. (1 + 1/p)[〈〈n〉〉p − 6]t for several values of p.

It might be interesting to similarly compute the time

derivative of quantities such as 〈Ap+q+1〉/[〈Ap〉〈Aq〉] or

〈Apq+1〉/〈Ap〉q, which have units of area and hence are also

constant in the scaling state. Note that Eq. 10 gives us one

equation for every two unknowns. If we could get another size-

topology relation for every p, it might be possible to combine with

the above identities to solve for 〈Ap〉/〈A〉p and 〈〈n〉〉p, and
conceivably derive (for example) an analytic form for the bubble

size distribution.

3 Materials and methods

To test the predictions by experiment we generate aqueous

foams of Nitrogen bubbles that have no film rupture and that, as

we will show, coarsen in a self similar scaling state. These foams

are made from a solution that is 92% deionized water and 8%

Dawn Ultra Concentrated dish detergent. The foam is generated

inside a sample cell constructed from two 1.91 cm-thick acrylic

plates separated by a spacing H = 0.21 cm and sealed with two

concentric o-rings, the inner of which has a 23 cm diameter; this

is the same apparatus used in (Roth et al., 2013; Chieco and

Durian, 2021), where additional details may be found.

Foams are produced as follows. First the cell is filled

completely with foaming solution. It is then flushed with

Nitrogen and sealed when a desired amount of liquid remains.

The entire sample cell is vigorously shaken for several minutes

until the gas is uniformly dispersed as bubbles that are smaller

than the gap between the plates. This ensures a large number of

small bubbles and aids in repeatability, tested later. The foam is

thus initially very wet, opaque, and three-dimensional. We stand

the cell so that the plane of the foam is vertical and place it

between a Vista Point A light box and a Nikon D850 camera with

a Nikkor AF-S 300 mm 1:2.8D lens. Images are acquired every

5 min for up to 24 h. Several minutes after productionmost of the

liquid drains out of the foam; after an hour the bubbles become

large compared to the gap. The resulting foam is dry and quasi-

two-dimensional, and only subsequent data are kept. In this

regime, the radius of the Plateau borders is about 0.03 mm, so the

thin soap films span more than 97% of the gap H between the

plates and gas transport across the borders is negligible.

The areas of individual bubbles are found directly from the

images. The images undergo some slight post processing to

enhance contrast and then we binarize, skeletonize, and

watershed them. Bubbles are the watershedding basins of the

skeletonized images and the number of pixels within each basin is

converted into the bubble area. Thus the choice of camera is

important and the D850 has an 8256 × 5504 po
2 pixel array

where po is the pixel size; combining it with a telephoto lens

placed 1.5 m away allows us to have both a large number of

bubbles and an accurate measurement of their area.

The vertices of each bubble are also found from the

watershed image as the pixels where three basins are in

contact. Each of the three bubbles are assigned that vertex

and the total number of vertices of each bubble equals its

number of sides. We track the number of sides of each bubble

and find they only change when there is a topological

rearrangement; thus we verify there are no film ruptures

throughout the experiment. Only bubbles that do not overlap

the boundary of the 19 × 6.5 cm2 region of interest are kept for

analysis. With the resulting collection of relevant size and

topology information for bubbles from each image we can

now test predictions from the previous section.

4 Experimental results and discussion

We are interested in examining the predictions made by two

generalizations of Eq. 2. The first is Eq. 15 which uses

distributions of the bubble areas and sides to predict a

coarsening rate for the entire foam. And the second is Eq. 10

which is a generalized size-topology relationship. These

equations were derived for 2-dimensional foams in a scaling

state so we first establish the foam is self-similar. Once this is

determined, we test the expectations against the results garnered

from three separate experiments. To distinguish the samples and
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gauge repeatability we identify them as FoamA, B and C (Foam 1,

2 and 3 in Supplementary Material). Each foam is produced using

themethod stated in the previous section; the experiments differ by

the specific initial distributions of 3-dimensional bubble sizes and

the dates they were performed; the data for Foam C was collected

several months before the data for Foam A and B. We keep images

only when the foams have become quasi-2d. Figure 1 show

representative zoomed-in images, where the bubbles appear as

polygons with curved edges. The three data sets consist of {81, 101,

69} images for the three samples, respectively, as they coarsen: the

corresponding initial numbers of bubbles are {1745, 3025, 2588},

and the final numbers of bubble are {728, 688, 846}; the

corresponding initial and final average areas of the bubbles are

{6.7, 3.5, 4.4} mm2, and {15.6, 14.4, 12.7} mm2, respectively; In

Supplementary Material we provide all bubble area and side

number data sorted by time for the three experiments.

4.1 Self-similar scaling state

Self-similarity is well documented and has been observed in

experiment and simulation. Here, a qualitative demonstration is

illustrated by Figure 1. There, we show two images separated by

340 min and zoom in to a portion from each that is

[Lx, Ly] � [15, 7.5] 




〈A〉

√
, so that the average bubble occupies

the same visual space in each. Bubbles in the younger foam are

smaller and thus appear more pixelated. Otherwise the two

images appear very similar, as though coming from different

regions of the same sample and hence as having the same

apparent bubble size distributions.

For a quantitative demonstration that the foams are in a

scaling state, we consider several metrics. Figure 2A shows that

the average area increases linearly with time for all three of our

foams. Such linearity holds only in the self-similar regime (too-

monodisperse and too-polydisperse sample have initial

coarsening rates that are respectively slower or faster Glazier

et al. (1987), Beenakker, (1988)). Furthermore, this linear

behavior is predicted by Eq. 2 for a self similar foam because

both the ratio 〈A2〉/〈A〉2 and the area-weighted average side

number 〈〈n〉〉 are independent of time. These quantities are

plotted in parts (b) and (c), respectively; both are constant in time

and are nearly the same for the three foam samples. For each

foam sample, we calculate Ko from Eq. 2, or Eq. 8 for p = 1 (since

they are the same equation) using the slopes from part (a) as well

as the individual values of 〈A2〉/〈A〉2 and 〈〈n〉〉 for each foam;

we find that Ko � [0.022 ± 0.001, 0.025 ± 0.001]mm2/min

where the first value is for Foam A and B, and the second

value is for Foam C. These experimental values depend on the

choice of gas and solution, which are the same for all three foams;

FIGURE 1
Images of coarsening foam at different times, zoomed in so
that the distributions of sizes appear the same by eye. Here, the
image side lengths are both Lx � 15






〈A〉

√
and Ly � 7.5






〈A〉

√
. This is a

qualitative demonstration of self-similarity in the scaling
state.

FIGURE 2
(A) Average area, (B) second moment divided by the average
area squared, and (C) area-weighted average side number 〈〈n〉〉
as well as the average side number 〈n〉 vs. time. The different
symbols represent data from the three different foam
samples. In panel (A) statistical error bars are included for Foam C
as σA � 〈A〉/




N

√
where N is the number of bubbles. The statistical

uncertainties for the other samples are comparable, and
correspond well to the bumps and wiggles in the data and also to
the differences between samples A and (B). Also in (A) the dot-
dashed represent proportionality fits, giving Ko values as labeled.
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however the larger value for Ko for Foam C is likely due to the

chemical aging of the foaming solution. But the data for Foam A

and B, which were acquired 1 day apart and collapse,

demonstrate repeatability. Taking all metrics together we

establish the three foam samples are in the self-similar regime.

Finally, as an additional check on the data, Figure 2C shows

average side number 〈n〉 ≈ 6 for each of the three samples. By

Euler’s rule this should equal six for large enough samples,

whether or not they are in the scaling state. We note that for

each quantity in Figures 2B,C the values are nearly the same

between foam samples. This along with the collapse of all of the

area distributions between the three samples in Figure 4, are

further proof of good repeatability regardless of the physical

chemistry of the foaming solution.

Having established the foam is self-similar it follows that the

distributions for side-number P(n) and area-weighted side

number F(n) must also collapse throughout time. Therefore

all of the data are averaged together for all times and for all

three foam samples, giving one final distribution for P(n) and one

for F(n); these are plotted in Figure 3 parts (a) and (b),

respectively. For both, the distributions are almost the same

when comparing between experiments and the error bar span the

calculated values for each n. Figure 3A shows that 5 and 6-sided

bubbles are most prevalent. From P(n), the average number of

sides is computed to be 〈n〉 = 5.97 ± 0.02. This is slightly smaller

than 6, as expected, because the samples are finite.

Figure 3B shows that the average F(n) distribution for the

three foams is skewed more towards cells with large n in

comparison to P(n), particularly for bubbles with n = {7, 8}

sides. This is understood because bubbles with a larger number of

sides tend have larger areas; the area-weighted average side

number, 〈〈n〉〉 = 6.83 ± 0.03, is therefore larger than 〈n〉.
Since the samples are self-similar, the cumulative area

distributions (CDFs) must be independent of time when

plotted vs. A/〈A〉. This is exemplified in Figure 4 for each of

the three coarsening foams, where the gray curves are data from

different times and where y � 1 −N CDF is the fraction of

bubbles whose normalized areas are larger than x = A/〈A〉.
The gray curves collapse to the CDF made from all the

normalized bubble areas collected into one distribution for

each foam. The three total distributions also collapse and the

data are found to follow the same slightly-compressed

exponential as was found in (Roth et al., 2013), and is

consistent with other works (Glazier and Weaire, 1992,

Stavans, 1993b). This behavior, while expected, is important

because it demonstrates that all the normalized moments of

the area distribution are independent of time; this fact is a main

ingredient in both the derivation and expectations of the size-

topology relations to be tested next. Note, however, that the data

have a cutoff where the CDF plummets to zero above the largest

observed bubbles, whereas the compressed exponential fit has no

such cutoff. Therefore large-p moments, which emphasize the

largest bubbles, will have significant systematic differences that

depend on sample size.

FIGURE 3
(A) Side-number distribution and (B) area-weighted side-
number distribution for the three coarsening foam samples,
averaged together over time. The error bars span the values
coming from the three different foam samples. The average
number side number 〈n〉 and the area-weighted average side
number 〈〈n〉〉 are indicated by arrows as labeled.

FIGURE 4
Cumulative distribution function for bubble areas for the
three coarsening samples, separately averaged over time and
shown as dotted curves; the largest five observed bubble areas for
each sample are plotted as symbols. Solid gray curves are
distributions at different times, for three different foam samples,
which contribute to the averages. The black dot-dashed curve is
an exponential and the dashed curve is a compressed exponential.
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4.2 Testing the size-topology relations

We are interested in testing two of our generalized forms of Eq.

2. The first is Eq. 15, relating the rate of change of two of the area

moments to the area-weighted side number. Since the foam is self-

similar the equation can be solved to show that 〈Ap+1〉/〈Ap〉 grows

linearly in time. By choosing any value of p and evaluating the

equation the data should collapse to a line with slopeKo. This is done

for several values of p and Figure 5A shows data for Foam A and B,

while Figure 5B shows data for Foam C since it has a different Ko

value per Figure 2A. For Foams A and B the data collapse to the

same line with slope Ko that is consistent with the values calculated

from Figure 2 data. Foam C shows the best collapse of the three data

sets and also has Ko within error of the prior analysis.

Equation 15 may be the cleanest looking of our generalizations

but it is similar to Eq. 2 in that it is a rate of change. However, Eq. 10

relates the sizes of the bubbles directly to their topology. There are

two main ingredients in the equation and those are the

dimensionless moments of the area distribution and the Ap-

weighted side number. We evaluate these quantities using data

from all times and they are individually plotted in Figures 6A,B,

respectively. We note that while Eq. 10 calls for values of p ≥ 2 this is

not the case of its components which can be calculated for any

power. Therefore the x-axis in Figure 6 extends to negative numbers

and we also evaluate the quantities for non integer values of p.

One striking feature of the figure is that the data for Foam A

appears separate from the data from Foam B and C; this is different

than the coarsening behavior where Foam A and B are similar and

Foam C is different. This separation does not happen until values of

p ≳ 7 as evidenced by the inset in Figure 6A. The inset demonstrates

how the data are well described by the moment generating function

for the compressed exponential we fit to the area distribution.

However the expectation deviates from the data for large p, likely

due to finite size effects and/or because there is no cutoff for the

assumed size distribution. It matches the data for Foam A best

because it has the largest bubble(s) of all three data sets. This is similar

to what we see from Figure 6B where the large-p data for Foam A

separates from the other two data sets. This too is explained by the

largest bubble being in Foam A because large bubbles also have a

large number of sides. Therefore for large-p the calculation of 〈〈n〉〉p
is dominated by the bubbles with the most number of sides which

also have very large areas. What is important for the size-topology

equation though is how these quantities relate to the ones evaluated at

a p integer step above them and that they are time independent. We

have already shown the latter and nowwant to evaluate the entirety of

Eq. 10 to see if the data follow the expectation.

FIGURE 5
Area moments normalized by preceding moment vs.
weighted time for various powers of p as labeled. Panel (A) show
Foam A and B because they have the same coarsening rate as
determined by Figure 2 and Panel (B) shows Foam C. Plotted
as such, the data collapse and have proportionality constant Ko
taken from the Figure 2A analysis, in accord with the prediction of
Eq. 15.

FIGURE 6
Dimensionless moments of the area distribution (A) and
weighted side number for areas raised to different powers (B) vs.
the power use in calculation. These quantities are calculated using
data from all times for each of the three samples as labeled.
Part (A) shows gamma functions as black dash-dotted and red
dash curves that respectively correspond to the exponential and
compressed exponential CDFs shown in Figure 4. The gray lines in
both parts point to special cases for each quantity: Panel (A) they
show where 〈Ap〉/〈A〉p = 1 and Panel (B) shows where 〈〈n〉〉p = 6.
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Using the various dimensionless moments of the area

distribution and the Ap-weighted average side number we now

compute the size-topology relationship of Eq. 10. It is evaluated

for 2 ≤ p ≤ 20; the expectation asymptotes to 1 so the resulting

values have 1 subtracted from them and are plotted in Figure 7

for each of our three foams. Performing this subtraction along

with plotting the y-axis on a log-scale is done to get a closer look

at the data. This reveals good agreement with the expectation.

However, there are deviations at large p but they are explained by

finite size effects and the sensitivity of large-p moments to the

largest bubbles in the sample.

5 Conclusion

We have derived several identities for 2d foams in a self-similar

scaling state. The ones we tested experimentally are: Eq. 15, which

compares the rate of change of successive moments of the area

distribution to the Ap-weighted average side number; Eq. 10, which

is a generalized size-topology relation that relates moments in the

area distribution to the Ap-weighted side number. Both equations

are derived using only von Neumann’s law and the fact that the

foams are in a self-similar scaling state.We tested these relationships

for three different foam samples. After showing the foam is self-

similar we found the data agree well with both predictions. A natural

extension would be to study 3d foams; however, since the von

Neumann like expression for domain growth in 3d is not purely

topological (MacPherson and Srolovitz, 2007), any size-topology

relationships would be approximate. Instead, future research might

focus on the dynamic size-topology equation that was derived here

in the form of Eq. 14 but was not tested. Another avenue for future

work would be to consider how the size-topology relations constrain

the form of the bubble size distribution and if they could permit it to

be derived. It would be particularly interesting to investigate if there

is a cutoff in the distribution, i.e., if there is a maximum possible

bubble size in comparison with the average. Further work could also

explore how d〈Ap〉/dt is affected by nonzero wetness, where von

Neumann’s law must be modified to account for transport across

the Plateau borders as predicted in (Schimming and Durian, 2017),

and tested in (Chieco and Durian, 2021); this is challenging because

the corrections to von Neumann depend not only on the size of the

Plateau borders but also on the shapes of the bubbles.
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The generalized size-topology identity vs. power. The
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