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Abstract. - The *resonating valence bond. (RVB) state has been proposed as the basis for an 
explanation of high-temperature superconductivity. Recently, we have described the charge 
and spin excitations about this state, and have shown that they are solitons, precisely analogous 
to those found in polyacetylene. Since the charged solitons are + e bosons, it is natural to ask 
whether flux quantization will occur in units of  hcl2e, as in traditional BCS superconductivity, or 
will come only in larger units of hcle. We show here that flux quantization in units of hcl2e will 
occur unless a condensation of cooperative ring exchanges occurs analogous to that found in the 
fractional quantized Hall effect. 

Resonance, the description of the quantum ground state of a system (say benzene) as a 
superposition of several bond configurations, has been the chemist's way of incorporating 
some of the delocalization energy which is naturally described using electronic energy 
bands. L. Pauling originally introduced the .resonating valence bond. (RVB) state in the 
hope of describing simple metals. This state, a quantum liquid of valence bonds, is kept from 
crystallizing into a Peierls state by its <<zero point. or resonance energy. Anderson [l l  has 
recently proposed that it may be realized in the recent high-temperature ceramic 
superconductors. 

Here we consider a tight-binding model on a square lattice, with M electrons occupying 
N > M sites. Since we are interested in topological properties (rather than energetics), we 
need not examine the true ground state-any state that is adiabatically connected to the 
ground state wil l  do. The states we will examine will be coherent superpositions of nearest- 
neighbor singlet bond configurations, where each electron participates in a singlet bond with 
one neighboring electron. We define RVB states as those which can be constructed 
perturbatively from one of these superpositions (I). 

(*) IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598. 
(l) We should caution that this definition probably excludes the states discussed by Anderson and 

collaborators, which have no gap to spin excitations. Such states will have a large density of neutral 
solitons, while the unperturbed states we discuss have none. 
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There are two ways to describe the valence bond configurations: one can pay attention to 
either the singlet bonds or the empty space between them. The latter description becomes 
preferable near half-filling M = N ,  where the unoccupied sites are dilute: we have shown [2] 
that these sites act as charge + e  spinless bosons. Because of the close analogy between 
these excitations and the domain walls in polyacetylene, we call them charged solitons. 
There are disadvantages to each of these points of view. The soliton description is 
incomplete: many bond configurations are compatible with a given arrangement of solitons. 
The description in terms of singlet bonds is complicated, because the various valence bond 
configurations are not orthogonal. (For example, on a 2 x 2 square, the overlap between the 
state with two horizontal bonds and the state with two vertical bonds is 11.2.) 

This paper will use both of these descriptions. First, we shall use the singlet bond 
description to investigate the Aharonov-Bohm (microscopic) periodicity in the energy. Since 
the elementary units in this description have charge - 2 e ,  one might imagine that the 
energy must be rigorously periodic in the enclosed flux with periodicity hcl2e. We shall see 
that the lack of orthogonality (') between configurations makes the Aharonov-Bohm energy 
periodicity hcle. The Aharonov-Bohm effect is microscopic in the sense that the magnitude 
of the periodic terms decays with the size of the ring. (The argument applies equally to 
metals and insulators.) Second, we shall use the soliton description to investigate flux 
quantization. Flux quantization is given by the macroscopic energy periodicity in large 
annuli, i . e .  the stiffness caused by the off-diagonal long-ranged order. The Aharonov-Bohm 
flux periodicity is only an upper bound on the flux quantum: even in ordinary 
superconductors, extremely small annuli will have energy periodic only with period hcle. It 
may be possible to prove (3) that flux quantization in a system of electrons must occur in even 
multiples of e ,  but we do not know of a compelling argument. (The flux quantum has been 
measured by several groups to be hd2e  in both Laz-,SrzCu04-y and in YBa2Cu07-,(4).) 
We shall show that a condensation of cooperative ring exchanges [5] is a necessary condition 
for flux quantization in units of hcle. 

Aharonov and Bohm showed that in a system of particles of charge q contained in an 
annulus with magnetic flux @ passing through, the total free energy is periodic in @ with 
period hclq. The standard argument is made by constructing wave functions with the same 
energy at  fluxes @ and @ + hc/q. Choose the vector potential to lie in the azimuthal direction: 
A = Ve(@8/2x).  Since the Hamiltonian depends only on (hli) V j  - ( q / c ) A ,  the wave function 

has the same energy at flux @ + hc/q as !P@ had at flux @. (The €ij are the angular coordinates 
of the particle positions Rj.) This argument also works if the particles are molecules with 

(2) After completing this work, we received a preprint from David Thouless on the same topic; he 
finds the energy has period hd2e regardless of the size of the system. In his two-dimensional models, 
his treatment ignores the nonorthogonality of the bond configurations; his work should be interpreted 
as a generalization of the topological constraint to nonbipartite lattices. We agree with his conclusion 
that strictly localized singlet bonds in single chain annuli have period hd2e; however, realistic models 
will have exponentially falling tails to the singlet bond wave functions which produce a small 
contribution to the energy with period hcle. 

(3) There are hints of a general argument in Yang's work on off-diagonal long-range order [3]. 
(4) Many of these measurements were of periodicities in Josephson junctions, which could disrupt 

the bonds. Recently, the flux lattice period has been measured by P. L. Gammel et al. [4]. 
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internal degrees of freedom, so long as their extent is small compared to the hole in the 
annulus (so that their angular center of charge 6, is well defined). 

What goes wrong when we apply this argument to valence bond configurations? We can 
imagine writing a many-body wave function Y$ for the bonds as a superposition of bond 
configurations, and label each configuration in terms of the center 6, and orientation of each 
of the singlet bonds. Can we use eq. (1) to create a new wave function for flux @ + hclze? The 
lack of orthogonality between the bond configuration .position eigenstates. prevents us 
from doing so. Changing the relative phase of two overlapping pieces of the wave function 
changes the normalization and the potential energy as well as the kinetic energy. Two bond 
configurations are orthogonal if the solitons are in different places, but the center of charge 
can move (and the relative phase can change) without moving the solitons: as shown in fig. 1, 
rearrangements of bonds with enclose the hole in the annulus can change the center of 
charge Ce, by Z. 

Thus exchange rings which encircle the hole (fig. 1) change the microscopic Aharonov- 
Bohm flux periodicity of the energy from hc12e to hcle. Does this extend to flux quantization? 
For large annuli, the rearrangements which span the hole have exponentially small overlaps 
with the original configuration ( -2 -L ,  where L is the circumference); each of their 
contributions to the flux-dependent energy is also exponentially small (5). There are, 
however, many distinct rearrangements which encircle the hole-if they are important to 
the wave function, then the periodicity of the macroscopic energy could also be hcle. This is 
precisely analogous to the physics of the fractional quantum Hall effect, where exponentially 
small contributions from an exponentially large number of exchange loops add coherently to 
the energy. 

To make this analogy more precise, we turn to the soliton description of the resonating 
valence bond state. First, let us establish some conventions. It is useful to distinguish a red 
and a black sublattice with a checkerboard convention: our singlet bonds always connect a 
red site to a neighboring black site. Vacant sites can lie on either sublattice, so there are red 
and black charged solitons. We will be interested in ordered pairs {A,  B }  of singlet bond 
configurations; the first element can be considered as a bra and the second as a ket in a 
matrix element (AIdIB). It is also useful to give a direction(6) to each bond: the bonds in 
the A configuration are directed from red to black, in the B configuration from black to red. 

Suppose first that the empty sites (charged solitons) are in the same places in the two 
configurations. Draw both configurations on the same lattice. Since any occupied site shares 
exactly one A bond and one B bond, the drawing will decompose into nonintersecting 
loops [61. (If a particular bond is part of both configurations, it will form a trivial loop of no 
enclosed area.) The directions of the bonds give orientations to each of the loops, and allow 
one to reconstruct the original pair of configurations from the oriented loops. 

These loops represent the electronic degrees of freedom left after the positions of the 
charge solitons are set. We would like to define a quasi-particle wave function 
P(R1, ..., RN-M) for the solitons, where the electronic degrees of freedom are considered 

3 

( 5 )  In the large-U limit, it is easy to see that it goes like tL/UL-l. 
(6) Many of the arguments presented here, distinguishing red and black sublattices and directions 

of bonds, work only on bipartite lattices (e.g. square and cubic). The conclusions presented here are 
also valid for triangular lattices; however, the arguments are a bit differen-ince the loops are no 
longer oriented, the winding number is only defined modulo two. Also, we should note that an annular 
region with an edge dislocation through the hole also has winding number defined modulo two (if there 
are an odd number of sites on a loop, it can change a red soliton to a black one). Again, simple 
modifications of the arguments give the same answer. 
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Fig. 1.  Fig. 2 .  

Fig. 1. - Loop around the hole. Two valence bond configurations are shown, encircling a hole of 
circumference L = 8. If we lump the charges into bonds of charge - 2e, the A configuration has bonds 
centered at  I9 = ((112) (2x/L) ,  (512) (2x/L) ,  ..., ((Ul - 3 ) / 2 )  ( 2 x / L ) ) ) ,  while the B configuration has bonds 
centered at  e = ((312) (2x/L) ,  (712) ( 2 x / L ) ,  .. ., ((Ul - 1) /2)  (2x1~5)).  The charges actually sit in the same 
places in the two configurations; nonetheless, the center of bond charges e, changes by x as one shifts 
from A to B. 1 

Fig. 2. - Solitons act as sources and sinks for <<bond-string>>. One vacant site is different between the A 
and B configurations. The black soliton in the A sublattice acts as a source, and the black soliton in the 
B sublattice acts as a source. As the B soliton encircles the hole in the annulus, it leaves behind a loop 
as shown in fig. 1. 

slaves to the soliton positions Cjust as they are slaves to the nuclear positions in helium). The 
problem (7) in this approach is the assumption that there is a unique .best>> electronic state 
for each soliton configuration in a multiply-connected geometry. 

(7) There is another less subtle but more serious problem of which the reader should be aware. In 
helium, the electrons can be removed using the Born-Oppenheimer approximation: the electrons relax 
fast compared to the nuclear motions. At least for the simplest models for high T,, quite the reverse is 
true. The solitons move with hopping matrix element t and the bonds rearrange via exchange 
interactions &U << t: the solitons move fast, and the bonds adjust slowly. This may not be the final 
answer (the quasi-particles may behave somewhat differently from <<bare>> vacant sites), but it seems 
for now that a soliton quasi-particle description is not the obvious one. On the other hand, we are 
interested in topological questions which should not change as we make the solitons heavy. Especially 
since this paper answers why the flux quantum given by the soliton charge is wrong, it seems natural 
to examine the limit in which the solitons are the only important degrees of freedom. 
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To see this, consider moving one black soliton in the B configuration, keeping the A 
configuration fixed (fig. 2). The original black site for the soliton has one bond pointing out of 
it (the B bond) and no A bond pointing into it (since the A configuration has a soliton there). 
The final position for the soliton has one bond pointing in, and none o u t i t  is a sink for 
.bond-string*, where the original site is a source. As we cany the soliton around the hole in 
the annulus and back to its original position, we leave behind a loop encircling the hole (fig. 
1). Clearly, this nonlocal effect is missed in the quasi-particle description. In the bond 
description, the solitons have fractional charge; nonlocal effects of this kind are typical of 
fractionally charged quasi-particles [7]. 

For fixed soliton positions, we can classify the bond configurations by a topological 
winding number W. The difference in winding number between two configurations is the net 
number of loops enclosing the hole counterclockwise. We also want to assign relative values 
of W for configurations with differing soliton positions; clearly, configurations in which only 
a few solitons have moved short distances and only local bond configurations have changed 
should have nearly the same winding number. However, because moving a soliton 
completely around the hole changes the winding number by one, we must add to W a factor 
involving the center of charge to make a winding angle 0 which changes continuously as the 
solitons move around. 

Let us imagine setting Q = 0 for some initial configuration of bonds (say, unstaggered 
vertical bonds everywhere, with all the solitons symmetrically disposed in one angular slice 
around 6 = 0). Any state can be produced by suitable local rearrangements of the bonds and 
solitons. Let OF and 07 denote the angular positions of the red and black solitons, including 
the net number of times they encircle the hole from their original positions. We can define 
the winding angle 0 for a general rearrangement to be the net angular motion of solitons 
needed to produce the final configuration 

If the solitons in two configurations are in the same places, the winding number W defined 
above equals the difference in 0 between the two configurations, divided by 2x. 

Thus the bond configurations .remember, the net number of solitons that have circled 
the annulus. The quasi-particle wave function can depend on 0 in addition to the soliton 
positions. Now, half the angular center of charge for all the solitons 

is a single-valued function of 0 and RI ,  ..., RN-M,  so 

is a single-valued quasi-particle wave function. 
Do these two wave functions have the same energy, for large annuli? Roughly speaking, 

we want to know the energy cost of changing the relative phase of the even and odd winding 
number sectors: flux will not be quantized in the larger units hcle unless that energy cost 
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grows with the system size. We have seen (using both the bond and soliton descriptions) 
that if the energy cost is E ,  then time evolution for a time hlE will introduce significant bond 
rearrangements which encircle the hole in the annulus without a next flux of solitons (the 
mixing states with different winding numbers). If the Hamiltonian is local ( i . e .  not involving 
products of creation and annihilation operators linking for distant sites), then a loop of 
shifted bonds of length L involves powers of the Hamiltonian of order L. For a loop to form 
without moving a soliton around, the system has to go through higher-energy intermediate 
states around the perimeter; the contribution of such a loop to the time evolution will go as 
exp [- aL] for some constant a. The number of paths around the hole grows with a similar 
form, and one might imagine a phase transition (as is found in the fractional quantized Hall 
effect [5]) when large loops begin to dominate. Otherwise, it will take an exponentially large 
time to excite large loops, and the hcle periodicity to the energy will therefore be 
exponentially small. 

We have examined this question in two dimensions, using both a mean-field theory and 
by approximately mapping the 2-d lattice onto a 1 + 1 dimensional continuum field 
theory [81. Both approaches suggest that condensation of ring exchanges does not occur in 
two dimensions. We have no constructive argument that flux quantization in units of hcle is 
impossible in a hypothetical resonating-valence-bond states with 3-d connectivity (*). 

* * *  
These ideas were prompted by discussions with E. ABRAHAMS and G. BASKARAN. The 

connection between ring exchange and flux quantization was developed during the March 
meeting of the APS, in a discussion with ABRAHAMS, BASKARAN, P. W. ANDERSON, and a 
number of other physicists. We thank the Institute for Theoretical Physics at Santa 
Barbara, the solid state group at the Massachusetts Institute of Technology, and the applied 
physics group at Stanford University for their hospitality during this work. The work was 
funded in part by NSF grants number DMR-83-18051 (SAK), DMR-85-03544 (DSR & JPS), 
PHY-82-17853, and DMR-84-18718. Two of us (SAK and JPS) acknowledge support through 
fellowships from the Alfred P. Sloan foundation. 

(8) If the experiment is not difficult, we suggest measuring the flux quantum in Ba(Pb/Bi)03. 
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