
Commun. Math. Phys. 106, 41--89 (1986) 
Communications in 
Ma maUc  

Physics 
© Springer-Verlag 1986 

A Mean Field Spin Glass 
with Short-Range Interactions 

J. T. Chayes 1,,, L. Chayes i,**, James P. Sethna 1,***, and D. J. Thouless 2,**** 

i Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, 
USA 
2 Department of Physics, University of Washington, Seattle, WA98195, USA 

Abstract. We formulate and study a spin glass model on the Bethe lattice. 
Appropriate  boundary  fields replace the traditional self-consistent methods;  
they give our model well-defined thermodynamic properties. We establish that 
there is a spin glass transition temperature above which the single-site 
magnetizations vanish, and below which the Edwards-Anderson order param- 
eter is strictly positive. In a neighborhood below the transition temperature,  
we use bifurcation theory to establish the existence of a nontrivial distribution 
of single-site magnetizations. Two properties of this distribution are studied: 
the leading perturbative correction to the Gaussian scaling form at the 
transition, and the (nonperturbative) behavior  of the tails. 
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I. Introduction 

Mean field theory, which approximates  the behavior of a system by ignoring the 
effects of fluctuations, usually provides a good starting point for studying phase 
transitions. Sometimes fluctuations are irrelevant: systems in sufficiently many  
spatial dimensions or with sufficiently long-range interactions often have mean 
field critical behavior. Other  times one can perturb about  this limit to extract 
approximate  information about  the system of interest. 

Developing useful mean field theories for disordered systems has been 
something of a challenge. The commonly studied Sherrington-Kirkpatrick (SK) 
model for spin glasses [1] starts with an infinite-range interaction - each spin 
interacts with every other spin. The solution of this model has taken many  years to 
develop and understand;  little progress has been made in extending the results to 
finite dimensions. Recently, one of the authors [2] has resurrected another  
approach to mean field theory for this system, and has studied the properties of 
spin glasses in infinite dimensions (on a Bethe lattice1). 

Here we present some results characterizing the spin glass transition on the 
Bethe lattice with r andom boundary  conditions. While this mean field limit may  
not have the same behavior as that  of the Sherrington-Kirkpatrick model, the 
finite range of the interactions may illuminate better the extension to finite 
dimension, and the model is certainly more  tractable. 

We expect that this paper  will have two somewhat  disjoint readerships: 
mathematicians who are interested in learning about  spin glasses and our methods 
for dealing with them, and physicists working on spin glasses who are interested in 
our results. This introduction first summarizes the history of the spin glass 
problem for those unfamiliar with it, and then summarizes our principal methods 
and conclusions. 

1 Previous work has distinguished carefully between the Bethe lattice and the Cayley tree. The 
Bethe lattice was considered an a priori infinite structure, while the Cayley tree is a 
thermodynamic limit of a finite tree. In many problems, the self-consistent solutions on the Bethe 
lattice were more physically relevant than those derived on the Cayley tree; however, the solutions 
depend sensitively on the chosen boundary conditions. In this paper, we develop a definite 
prescription for choosing boundary conditions and taking thermodynamic limits on the tree 
which in all cases seems to reproduce the Bethe lattice solutions. We therefore refer to our system 
as a Bethe lattice 
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Ia. History 
Spin glasses are typically formed by dilute magnetic impurities at random 
positions in a nonmagnetic, metallic host. The important degrees of freedom in 
these materials are the spins of impurity electrons. At very low concentrations and 
temperatures, the interactions of these spins with the Fermi sea of conduction 
electrons tend to "quench" them; this is the Kondo effect, which will not concern us 
here. At the concentrations of interest to us, the conduction electrons primarily 
mediate an effective interaction between the spins. The sharp edge of the Fermi 
surface leads to an effective interaction (the RKKY interaction) which oscillates in 
sign with distance and dies away relatively slowly. 

These materials show a cusp in the magnetic susceptibility as a function of 
temperature. Above the cusp, the material behaves mostly as it would without 
interactions between the spins (as a paramagnet). Below this temperature, many 
indications suggest that the spins have frozen or locked into a disordered, glassy 
state; in particular, there is hysteresis on very long time scales, and relaxation with 
a broad distribution of frequencies. The cusp alone is suggestive of a transition; 
together with the onset of glassy behavior it seemed likely (although not certain) 
that a cooperative glass transition was occurring. Recent measurements of a 
divergence in the nonlinear susceptibility [3, 4] (signaling a diverging correlation 
length) have convinced most workers in the field that there is a glass transition in 
experimental (three-dimensional) spin glasses. 

Edwards and Anderson [5] decided that the key feature of spin glasses is the 
random sign of the RKKY interaction, and that the dynamics of the conduction 
electrons, the random positions of the impurities, and the details of the strength 
and decay of the interactions with distance were unnecessary complications. 
Edwards and Anderson modelled each electron with an Ising spin 2: a two-state 
variable s = _ 1. The effective interaction induced by the conduction electrons is 
represented by an alignment energy 2Jij between nearest-neighbor spins si and sj. 
The Hamiltonian is thus 

H = -  Z Jijsisj, (1.1) 
<i,j> 

where the sum is over all nearest-neighbor bonds (i,j> on a regular lattice of spins. 
The bond interactions are chosen at random ("quenched" disorder) from a 
symmetric distribution (e.g., _+ J). The interaction J,j is called ferromagnetic if it is 
positive (tending to align two spins); if it is negative it is antiferromagnetic. One 
central feature of this model is that it is frustrated: no arrangement of spins can 
satisfy all of the bonds. In particular, given a closed loop of nearest-neighbor spins 
on the lattice, with probability one half there will be an odd number of 
antiferromagnetic bonds on the loop. In such a loop, any configuration of spins 
must break one of the bonds. The Edwards-Anderson model is paramagnetic at 
high temperatures, but as the temperature is lowered there appears to be a 
transition below which there are many equilibrium states. Edwards and Anderson 

2 There are Heisenberg models of spin glasses, which in many cases describe the behavior more 
accurately. However, small crystalline effects break the spherical symmetry, and the behavior near 
the spin glass transition is thought to be described by the Ising version 
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characterized the transition not by positivity of the magnetization (which should 
vanish for all positive temperatures), but instead by positivity of 

q=-<si> 2, (1.2) 

where the bar denotes a "quenched" average over realizations (see also [6]). 
The central role of frustration in this model ted many people to think about 

gauge invariance. Gauge transformations are relabeling schemes which leave the 
important physical properties invariant. In a spin glass, given any nonzero 
function z~, the system described by spins sj and bonds Jij is equivalent (in the 
absence of an external field) to one with spins sj=zis i and bonds J~j='cf-1Jij'c ~ 1. 
(Typically, one chooses zj = + 1.) The energy and frustrated loops are invariant 
under this transformation. Models with randomness but without frustration (e.g., 
the Mattis spin glass) can be formed by a random gauge transformation from an 
ordered system (e.g., a ferromagnet); these unfrustrated models are generally not 
taken seriously as models of spin glasses. 

The first mean field model to provide useful information about the spin glass 
state [7] was an expansion in the inverse number of nearest neighbors 1/Z. The 
effects of loops are formally higher order in l /Z,  and this simplifies the problem to 
satisfying a set of self-consistent equations (the so-called TAP equations). Indeed, 
one derivation of the TAP equations starts with a spin glass on a "Bethe lattice" 
(see Fig. 1)- a lattice which branches indefinitely with branching ratio Z, on which 
the problem may be analyzed by the Bethe cluster method carried out to lowest 
order. Earlier work [8, 9] on spin glass models on the Bethe lattice is discussed in 
the next subsection. The identification of the Bethe lattice as an infinite- 

~/ S L 

Fig. 1. Isotropic Bethe lattice with coordination number Z = 3 
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dimensional limit is geometric. The Bethe lattice cannot be embedded in a finite- 
dimensional lattice; alternatively, the number of sites that can be reached in an 
N-step walk (~  N a in a d-dimensional lattice) grows exponentially in N. 

Solutions of the TAP equations gave good descriptions of numerical 
simulations of spin glasses, but interest in this model has waned. The TAP 
equations could only be approached numerically. Although algorithms for solving 
them were much more efficient than solving for the true spin glass equilibrium 
states, interest in numerical solutions of an approximate theory was limited. 

There have also been doubts about the formulation of the spin glass 
problem on the Bethe lattice. On the one hand, with no loops where was the 
frustration? Any set of bonds can be satisfied by working step-by-step out from 
the center; a gauge transformation can push all of the disorder out to infinity. 
On the other hand, below the spin glass transition the behavior appeared to 
depend sensitively on boundary conditions. In formulating the problems on a 
tree structure, one must be careful to treat the boundary properly: if the 
forward branching ratio is Z - 1 ,  then all but I/(Z-1) of the spins are on the 
boundary! Generally speaking, one treats a large region of radius R1 in the 
center of a tree of radius Rz, taking the boundary R2 to infinity before taking 
the thermodynamic limit Rl-~oe. The effects of the boundary conditions are 
supposed to die away with distance, in which case this order of limits generates 
the bulk behavior. However, the spin glass transition temperature is precisely 
the point at which the boundaries become important (the "shattered suscepti- 
bility" diverges [10]). We shall see that recent developments have improved 
matters: analytic methods are now possible, frustration is imposed by boundary 
conditions, and the effects of boundary conditions die away exponentially when 
treated properly. 

The Sherrington-Kirkpatrick mean field theory for spin glasses, although 
proposed before TAP, gave useful low-temperature results only many years later. 
The Hamiltonian is of the Edwards-Anderson form (1.1) with a Gaussian 
distribution for J~j, except that the interaction is infinite-ranged; each spin 
interacts with every other spin, and the sum extends over all pairs (i,j). After 
many false starts, it was pointed out that the low-temperature phase is 
characterized by "replica symmetry breaking" [11]; the first derivation of the 
solution to this model explicitly demonstrated the broken symmetry [12]. This 
forbiddingly formal solution was elucidated to a large extent by a series of papers 
explaining the nature of the order parameter [13-15], comparing it with numerical 
simulations [16], and giving information about the distances between different 
extremal states [17]. Shortly after the replica symmetry breaking solution, another 
approach incorporating relaxational dynamics was developed [18]. 

There are three important features of the solution to the infinite-range model. 
First, there are an infinite number of extremal states in the thermodynamic limit. 
Every time the system is cooled, a vastly different configuration of spins is 
observed; energy barriers between different states become infinite below the spin 
glass transition. Second, some extremal states are more alike than others. The 
overlap, q~,, between two extremal states ~ and ~', given by the average of (sis~)~, 
over all spins at finite temperature, is neither zero (as it would be in a paramagnetic 
phase); nor is its distribution concentrated on only a few values (as it would be in a 
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ferromagnet or a Mattis spin glass with constant [J~jI). Indeed, the probability 
distribution W(q) for the overlap between extremal states is a nontrivial prediction 
of the theory. Thus the order parameter describing the mean field solution is not 
simply of the Edwards-Anderson form (1.2); it is a function q(x), with W(q) = dx/dq. 
Third, the overlaps between extremal states group themselves into a tree-like 
hierarchy. Specifically, the topology is ultrametric; if the overlap is thought of as 
defining a distance on the space of the states, then each triangle is either isosceles 
with a base not longer than its sides or is equilateral. This can be used to organize 
the extremal states into a tree. Given an extremal state So, put those extremal states 
whose overlap with s o is greater than q on a common branch; states on this branch 
will have overlaps no larger than q, and will be equidistant from any state not on 
the branch. We will see that the Bethe lattice also has a function Q(x) as an order 
parameter; the tree structure of the Bethe lattice may relate to the hierarchy of 
extremal states of the Sherrington-Kirkpatrick model, but we have yet to make 
such a connection precise. 

There has been some recent skepticism about the relevance of mean field theory 
to short-range spin glasses. The doubt is no longer that there is a spin glass 
transition; numerical simulations [19, 20], finite-size scaling calculations [21, 22] 
and the measurement of a divergence in the nonlinear susceptibility [3, 4] indicate 
that a freezing transition occurs in three dimensions. The question is whether the 
behavior in mean field is at all like that in short-range models in finite dimensions. 
On the one hand, the detailed behavior of the infinite-range model might be a 
pathology which has no analogue in finite dimensions. On the other hand, mean 
field theory misses important features of the dynamics. In finite dimensions, the 
flipping over of clusters of spins probably dominates the relaxation. Unfrustrated 
clusters have been shown to lead to an intermediate Griffiths phase between the 
spin glass and paramagnetic phase [23, 24]; while relaxation in the paramagnetic 
phase is exponential, and the spin glass phase has long-range order in time, the 
Griffiths phase has nonexponential relaxation. Clusters of another sort (droplet 
excitations from the ground state) are the basis for a recent scaling description for 
the dynamics of spin glasses [25]. Clusters lose their meaning in mean field theory 
(in the sense that the surface to volume ratio of connected objects is of order one); 
without reinterpretation, none of these effects are thought to extend to infinite- 
range models or to infinite dimensions. While we have no reason to expect the 
Bethe lattice to be much better in these regards than the infinite-range model, it is 
so much simpler to handle that its implications for finite dimensions should be 
more apparent. 

lb. Organization and Main Results 

The model we consider in this paper is the _ J Ising spin glass on the Bethe lattice 
with forward branching ratio two. Figure 1 shows the Bethe lattice. Each site, with 
Ising spin s = _+ 1, is connected to three others; each level of the tree has twice the 
number of sites of the previous level. The bonds have an interaction strength either 
+ J or - J, with equal probability. Henceforth in this paper, we will take [JI = 1. 
The Hamiltonian is thus of the same form as the Edwards-Anderson Hamiltonian 
(1.1) described above: 

H = -  ~ Jijsisj. (1.1') 
( i , j )  
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There is a long history of related work on random systems on the Bethe lattice. 
As mentioned above, there was very early work on random bond Bethe lattices, by 
groups in Tokyo [8] and Tohoku [9], which derived recursion relations and found 
a spin glass transition temperature. Bowman and Levin [26] examined the entropy 
of the spin glass state. More recently, the random field problem was studied by 
Bruinsma [27]. Finally, there is the work of [2], of which this work is the 
continuation. 

We conclude this introduction with a brief "road map" of our results. 
There are two important topics addressed in Sect. II: boundary conditions and 

recursion relations. The correct choice of boundary conditions is a key element in 
our approach. To emphasize this, we will first discuss the deterministic Potts 
systems on the Bethe lattice, where the correct (Bethe cluster, self-consistent) 
solution results from ferromagnetic boundary conditions, while free boundary 
conditions lead to spurious results. We then turn to the spin glass, where the spins 
at the boundary are taken to have some arbitrary but fixed configuration. Any 
such boundary condition transforms into random boundary fields under the gauge 
transformation which makes all bonds ferromagnetic; in the bulk of this paper, we 
assume that this gauge transformation has been performed. By fixing our 
boundary conditions, we have not only explicitly exhibited the frustration, but we 
have also set up a concrete statistical mechanics problem. 

Working on the tree allows us to analyze the problem by a recursive method. 
Consider the half-space Bethe lattice with n levels in Fig. 2. For any given set of 
bonds and any boundary condition, there is a magnetization #o = (So) for the spin, 
So, at the base of the tree. Consider two branches with base spins SA and SB; one can 
calculate the magnetizations PA and #B that they would have h a d / f  they were 
disconnected from spin So. It so happens that/~o can be written explicitly in terms of 
#A and #B: 

#0 = F(#A, #B) = Pe(#a + #n)/( 1 + pe2#A#B), (1.3) 

where Pe = tanh(1/kBT). That is, details about what happens on the rest of the tree 
are not important. According to the distribution of boundary fields, there will be a 
distribution, dQ,(#), of magnetizations for the n th level. The large-n behavior of this 
distribution characterizes the spin glass. Since the two branches are uncorrelated, 
and since # may be written in terms of #a and/z~, Q, may be written as a 

s A ' - - e /  s° 
s o 

Fig. 2. A half-space Bethe lattice with forward branching ratio Z -  1 = 2 
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convolution of Q,_ 1 with itself; that is, formally, 

Q,(U) = ~ d# A ~ dU~Q,_, (~A)Q,_, (U,)6(~- F ( ~ ,  U,)). (1.4) 

Finally, the full-space magnetization ~L of the spin SL of the isotropic Bethe lattice 
in Fig. t can be derived from the half-space magnetizations #L and #R, where the 
latter are computed assuming the connecting bond is removed: 

~_L = @~ + peru3~(1 + pe#~'R). (1.5) 

The distribution of magnetizations of the isotropic tree can be derived from the 
half-space distributions by an expression along the lines of Eq. (1.4). 

In Sect. III, we use a moment analysis of the recursion relations to establish 
some global features of the magnetization distribution as a function of tempera- 
ture. The critical temperature corresponds to Pe = PC ~ 1/~/~. Above this tempera- 
ture (p~ < Pc), the single site magnetizations are globally attracted to zero. That is, 
any initial distribution of magnetizations converges exponentially fast to a point 
mass at zero. Below this temperature, we place upper and lower bounds on the 
Edwards-Anderson order parameter (the second moment of the distribution). Any 
(nonzero) distribution of boundary magnetizations will iterate into this band 
within a finite distance of the boundary (see Fig. 3). As a consequence of our 
bounds, the critical behavior of the Edwards-Anderson order parameter is given 
by 

q ~ l p - p d  ~ as p $ pc (1.6) 

with fig = 1. 
While the moment analysis guarantees that the low-temperature behavior is 

nontrivial, it was not obvious (at least to the authors) that it is described by a fixed 
distribution of magnetizations. Section IV temporarily abandons probabitistic 
methods, and uses functional analysis and bifurcation theory to prove the 

® 

P C 

Stable Ban I 

qL 

P 
6 

3. The stable band. The shaded region, to the right ofpa - 1 /¢ i ,  denotes allowed Fig. asymptotic 
values for the variance of any nontrivial symmetric initial distribution. Black line (p < PG) indicates 
region of contraction for all symmetric distributions. The point Pc = 1/2 is the critical point for the 
unfrustrated ferromagnet of corresponding strength 
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pC~) 

~ ~--~ "~----- ....... :i .... 
4 , , ,  , . . . . . . . . . . . . . . . . . . .  B -  

I o" * - - t  

Fig. 4. The solution near Pc. Gaussian nature of the solution illustrated above. ~(~) ifi the "actual" 
solution. The rescaled solution, Q*(/~*)-~ ]/-A-Q(~/~/-A-), is Gaussian to lowest order. The rescaled 
width, a*, is a (computable) number of order unity 

existence of a positive density as a fixed point to the recursion relation in a 
neighborhood above PG. We call this fixed point function Q~(#), where A - P c -  PG. 
Since [by Eq. (1.6)] the second moment q ~(const)A, there is a natural rescaling 

given by #--->/~/]/~; in these rescaled variables, the distribution becomes Gaussian 
as p + PG (see Fig. 4). 

In Sect. V, we briefly examine some of the properties of the spin glass solution 
Oa(p). The first important question is whether the distribution is stable (an attractive 
fixed point). We cannot show that the distribution is globally attracting; indeed, in 
a technical sense we have not even shown linear stability for positive A. However, 
we have shown that the first order approximation to the functional derivative has 
all negative eigenvalues; this is a natural first step in a complete stability analysis. 
The second question we address is the shape of the distribution near the critical 
point. We solve for the function 0a to first order in A, and find the leading non- 
Gaussian correction. Finally, we consider the asymptotic behavior at the high and 
low ends of the magnetization distribution. Wherever Q~ exists, we show the 
magnetization falls to zero as exp[-1/(c(P)], where ( measures the distance 
between/~ and its maximum (or minimum) allowed value. In particular, we have 
upper and lower bounds on c(p) of the form (log2)/llog{(1 -p)/[(const)p]}l. These 
results are consistent with a picture of ~o a as an attractive, symmetric, Gaussian-like 
distribution with soft singular behavior at the tails. 

H. Derivation of  the Magnetic  Recursion Relations 

The distribution of single-site magnetizations contains much of the information on 
the behavior of a spin glass. The first step in obtaining the distribution is to derive a 
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recursion relation between the magnetizations of certain sites. In this section, we 
give a first principles derivation of the magnetic recursion relation for the Ising 
spin glass on the Bethe lattice. Our main result is Eq. (2.27); except for this relation, 
the analysis in later sections is independent of the material presented here. Before 
the derivation of Eq. (2.27) (in Subsect. IIb), we will devote Subsect. IIa to a 
derivation of analogous results for certain deterministic spin systems. 

In order that things be kept to a sensible level, we treat only the case of forward 
branching ratio 2 (i.e., Z = 3). In addition, Subsects. IIa and IIb wilt be concerned 
only with a derivation of half-space quantities. Finally, in Subsect. IIc, we will show 
how a knowledge of these items (both in the deterministic and random systems) is 
sufficient to obtain the corresponding quantities in the isotropic lattice. 

Subsection IIc also contains a detailed discussion of the significance of the 
recursion relations and their solutions for the construction of models in statistical 
mechanics. It is here that our approach differs fundamentally from the traditional 
one (which was used for deterministic systems in [28-30] and for random systems 
in [8, 9, 26, 27]); rather than just studying the equations in their own right, we also 
show how they can be used to construct concrete infinite-volume systems whose 
single-site magnetizations are described by the solutions to the recursion relations. 

IIa.  Percolation and Deterministic Ferromagnets 

The problem of percolation on the Bethe lattice is a canonical example of a 
branching process. As a problem in critical phenomena, it was thoroughly 
examined some time ago [31]. Here, we will be content with the most elementary 
derivation of the half-space infinite cluster density. 

Consider a Bethe lattice with coordination number 3 on which bonds are 
occupied, independently, with homogeneous density p e [0,1]. We define P~(p) to 
be the probability that, at bond density p, a given site is part of an infinite cluster in 
the half-space. Then 

P~(p) = 1 - [1 _pp~(p)]2.  (2.1) 

solution is trivial, while if p> l /2 ,  (2.1) admits the For p<1/2,  the only 
"supercritical" solution 

P o~ (P) = P -  2(2P - 1). (2.2) 

An elementary result from the theory of branching processes shows that for 
p > p c =  1/2, (2.2) is, in fact, the correct solution to (2.1). 

It has been known since the work of Fortuin and Kasteleyn [32], that many 
magnetic systems can be treated as problems in interacting percolation. Consider 
an n-state Potts model given by the Hamiltonian 

H = - ~. [n6(si, s t ) -  1], (2.3) 
<i, j> 

where the spins si take the values t ..... n, and 6(si, s j) = 1 if the two spins take the 
same value, and zero otherwise. At inverse temperature r =  1/ksT, the Fortuin- 
Kasteleyn (FK) representation describes the Potts model by an interacting 
percolation measure where the weight of a percolation configuration co is given by 

Wv,,(co) = ~ Bv(co)n ~(~°) . (2.4) 
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In the above, p=p(n, fl)= 1 - e  -"p, Bp(co) is the Bernoulli weight of co at bond 
density p, c(c0) is the number of connected components of (n (counting each 
isolated site as a separate component), and ~ is a normalization constant. As was 
noted in the original reference, all quantities of interest for statistical mechanics 
can be gleaned from a complete knowledge of the measures described by (2.4) when 
n=2,  3 . . . . .  For example, the constant ~e is the partition function, and the 
"percolation" probability is identified with the spontaneous magnetization. On the 
other hand, for noninteger n, (2.4) is well-defined as a random cluster model, which, 
like Bernoulli percolation, is capable of exhibiting a phase transition. 

Of course, (2.4) only makes strict sense in a finite volume; in the study of phase 
transitions we must concern ourselves with the possible distributional limits of the 
measures described by (2.4) (i.e., the sense in which the thermodynamic limit is 
taken). 

What is disturbing about (2.4) is that for a (finite piece of the half-space) Bethe 
lattice, the number of connected components c(co) is simply related to the number 
of occupied bonds b(e~) and the total number of sites S via 

c(co) = S -  b(co) . (2.5) 

It is easy to show that the measures defined from (2.4) with the rule (2.5) are none 
other than the ordinary percolation measures at effective parameter Pc(P, n) 
= p/[p + n(l -p ) ] .  Hence these systems undergo a transition as described by Eq. 
(2.2) at Pe = 1/2. As has been discussed by numerous authors (see, e.g. [29]), this is 
annoyingly inconsistent with the results of the Bethe cluster method (or for that 
matter, the Curie-Weiss equations). In particular, the transition is always 
continuous and the magnetization exponent, r, takes on the value 1 (not 1/2 if 
n = 2 !) corresponding to percolation mean field behavior. 

Our resolution of these difficulties (which is different from both the usual 
viewpoint - see e.g. [28, 29], and the alternative derivation of [30]) is that the 
noninteracting percolation measures are not the only possible distributional limits 
of the measures in (2.4). Indeed, tracing (2.4) together with rule (2.5), it is seen that 
(whenever n = 2, 3, ...) this corresponds to free boundary conditions for the spin 
system. 

A popular way of inducing spontaneous magnetization in certain systems is via 
symmetry breaking at the boundary. (In principle, this should have the same effect 
on bulk properties as a vanishingly small magnetic field.) For the Ising model, the 
usual procedure is to set all spins at the boundary of the sample to + 1 and, in the 
general n-state problem, we may set all boundary spins to the "first" spin state. In 
the random cluster picture, one can show that this corresponds to identifying all 
clusters touehin9 the boundary as part of the same connected component, a 
procedure we call wiring of the boundary. This naturally suggests a set of well- 
defined problems for any positive value of n. 

Remark. It is worth noting that for n > 1, the random cluster measures enjoy the 
Harris-FKG [33, 34] property. As such, the finite volume measures with "wired 
boundary" are the extremal zero field conditional measures. Hence-  assuming the 
infinite volume limit is taken along an ever increasing sequence - it is trivial to see 
that we arrive at the maximal state. In particular, this means that the resulting 
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Fig. 5 

A B 

e a e b 
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measure will FKG dominate the corresponding "free boundary" measures, so that 
if n > 1, the percolation probabilities cannot be smaller than those dictated by (2.2). 
We will see that this indeed happens (rather dramatically) for all n > 1. 

The derivation of various percolation probabilities in the half-space is now 
quite straightforward. Let us consider two distinct lattices, denoted by A and B, 
which are finite and "wired." We will couple these two lattices via the edges e a and 
eb, as shown in Fig. 5. If co is a configuration on the combined lattice, we may 
decompose co according to 

co = (coA, coB, ~ab), (2.6) 

where coA is the restriction of co to A, etc. Let us denote by Za and Zb the indicators 
that the bonds a and b, respectively, are "occupied." Finally, we will use the 
notation Wa(coA) for the weight of configuration coA in the uncoupled system, with 
a similar meaning assigned to W~(coB). Explicitly, up to a constant (but volume- 
dependent) factor, 

Wa(COA) = Bpe(coa)ff *(~') , (2.7) 

where c*(coa) is the number of clusters attached to the boundary of A. 
Now the weights W(co), which are given by a formula similar to (2.7), will factor 

WA(COA)Wn(COB)Bpe(~ab) unless the origin is connected to both the boundary of A 
and that of B. In the latter case, we have overcounted the total number of 
connected components by one, and deserve an additional factor ofn. Thus we have 

W(co)  = WA(coA)WB(coB)Bpe(~ab) [1 "4- (n - -  l)~a(~ab)~b(~ab)ZMA(fDA)~Mr~(OJB)] , ( 2 . 8 )  

where M A (respectively MB)  is the event that the "origin" of the A (respectively B) 
lattice is in the connected component of the boundary. 

Defining ~ -- Y', W(co), ~ff A ~ Z WA(COA), rrtA =- ~c~A - 1 ~_, WA(COA)~MA((jjA) ' with 
(2.) CO A (O A 

corresponding definitions for the "B" terms, we have 

= £ea~n(1 + p e Z ( n -  l ) m a m n ) .  (2.9) 

The percolation probability (or magnetization) of the coupled system is given by 

m -~ ~ f  --1 Z W(co)ZM(co) = ~ -- 1 Z W(co)  
c9 ¢9 

X EZa(~ab)ZMA(O,)A)-I- Zb(~ab)ZMB(coB)-- Za(~ab))fMA(coA))fb(~ab)ZMB(coB)] (2.]0) 
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by inclusion-exclusion. An easy computation yields 

m=p~[ma+mB+p~(n--2)mAmB]/[1 +pe2(n  - l)mamB], (2.11) 

so that in the infinite volume limit, the "wired" percolation probabilities must 
satisfy 

m t°~ = p~[2m (~°) + pe(n - 2) (m(~))2]/[1 q- p~2(n - 1) (m(~))2]. (2.12) 

For  pe < 1/2, the only solution of(2.12) is the trivial solution m t~°) = 0. However, 
to examine the solution at the critical point p~= 1/2 and beyond, we must 
distinguish three cases: 

i) l < n < 2  

Here (2.12) implies the system has a continuous transition of the percolative type. 
The results near Pe = 1/2 are 

m t~)(p) = (n - 2 ) -  1 [(2pe - l ) /p2 ]  [1 + O(p~ - 1/2)]. (2.13) 

ii) n = 2  

Again, the transition is continuous, but now we find 

m(~°)(p) = p c -  1(2p~- 1) 1/2 (2.14) 

if p~> t/2; we recover the usual Ising mean field behavior. 

iii) n > 2 

In this case, no solution to (2.12) can yield a continuous transition for the obvious 
reason that m (~°) would become negative. Elementary reasoning shows that a 
discontinuous transition occurs at Pe = 1/2 with 

m(~)(1/2) = ( n -  2 ) / (n -  1). (2.15) 

Remarks. In all three cases, (2.12) yields the expected mean field behavior. Note  
that this is in contrast to the results obtained using free boundary conditions. 
However, the critical temperature is unaffected by boundary conditions, as one 
would expect. 

It is also interesting to observe that when 1 >> ( p c -  1/2) 1/2 >> ( 2 -  n) > 0, the 
system has behavior qualitatively similar to the Ising (n = 2) case. Indeed, here one 
finds 

m(°~)(p~) = p~- 1(2pc- 1)1/211 + (1/4)(2 - n)/(2pe- 1) 1/2 q- 0 ( ( 2 -  n)/(2pe-  1)1/2)2]. 

(2.16) 

Equation (2.16) breaks down when (p~- i /2 )  1/2 is comparable to ( 2 - n ) ,  and the 
system exhibits a crossover to percolation-like behavior. 

l ib .  Random Boundary Fields in the Ising Case 

In this subsection, we generalize our analysis to spin glass systems. Thus (2.3) is 
replaced by the random Hamiltonian: 

= - Z s j ) -  1 ] ,  (2.17) 
(i, j) 
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where the Jij take on the values + 1 and - 1  with equal probability. Since our 
principal concern is the Ising spin glass, we will henceforth restrict attention to the 
case n = 2, so that up to additive constants (2.17) reduces to the Edwards-Anderson 
Hamiltonian (1.1). 

As discussed in the introduction, for any realization {J~i} there exists a gauge 
transformation that reduces the system (2.17) to one with purely ferromagnetic 
interactions, at the expense of introducing complications at the boundary. 
Whether nontrivial boundary conditions are actually induced is a consequence of 
the boundary conditions imposed on the untransformed system. Indeed, as has 
been demonstrated in the deterministic case, the boundary conditions must be 
chosen in accordance with the problem one wishes to address. In this light, it 
should be no surprise that a "spin glass" on the Bethe lattice with free boundary 
conditions corresponds to an (uninteresting) annealed problem, and is again 
described by the ordinary percolation results of Eq. (2.2). In order to describe a 
quenched spin glass, one should impose fixed (say +) boundary conditions which 
become "unrecognizable" under the random gauge transformation. Thus a 
quenched spin glass on the Bethe lattice is equivalent to a ferromagnetic tree with 
random boundary conditions. We will sometimes refer to these induced boundary 
conditions as random boundary fields. 

With nontrivial boundary fields (i.e., not free and not +), a new feature enters 
the problem. Indeed, as is quickly revealed by examining the FK representation, a 
"cluster" of sites connected by occupied bonds represents a set of spin configur- 
ations in which all spins of the cluster are of the same type. Thus, for a finite piece of 
the Bethe lattice, Jr ,  with f ixed  boundary condition ( a [ ~ ) ,  any site in the 
connected component of the boundary is part of a cluster whose type is dictated by 
the condition at the boundary. In particular, the boundary condition (o-[aJY') 
implies that no two boundary spins of opposite type can be endpoints of the same 
bond cluster. 

We will derive our recursion relation in much the same fashion as before (but 
specializing to the case n = 2). However, here when we join two pieces of the lattice, 
we must take care to enforce the consistency condition: Two clusters which, under 
the directive of their respective boundary conditions, are deemed to be of opposite 
type must not be allowed to merge at the origin. This consistency condition is the 
essence of "frustration" on the Bethe lattice. 

We again consider two pieces of lattice, A and B, which now come equipped 
with some specified (but for the moment arbitrary) boundary condition. We define 
the event, MA+, that the origin of the A system is attached to its boundary and 
terminates on a plus spin. The events Ma-, Ms +, and MB- are defined accordingly. 
All other symbols (e.g., Y'a, ~B etc.) have their previous meanings, only now it is 
understood that these objects are random variables, depending on the distribution 
of boundary spins. From the previous discussion, it should be clear that, for 
example, the events M A+ and M A-  a r e  mutually exclusive (i.e., M A+ c 3 M  A-  -= 0). 

Let us compute the ~ obtained by coupling the A and B systems through the 
"origin." The weights for the coupled system are given by 

W((o) = WA(O)A)W,(O)B)B,~(~.b ) 

X [(1 -- Z.) (1 -- Zb) + Z.( 1 -- Zb) + Zb( 1 -- Z.) 

+)G)~b(1 + (ZM~ + +)~MA-)(~,~+ + XM,,-)])~+ +/- - ,  (2.18) 
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where we have suppressed the arguments of the indicator functions. [To compare 
(2.18) with previous formulas, observe that here n -  1 = 1.] In the above, X+ +/- - is 
the newly required consistency condition which forbids a plus cluster attached to 
the boundary of one side to join with a minus cluster emanating from the boundary 
of the other. Explicitly 

Z + +/- - (co) = (1 - •Ma+ (coa)Z~t,- (cos)) (1 - ZMa- (COA)ZM~ + (con)) (2.19) 

if XaXb = 1, and is unity otherwise. 
After a little algebra, one can show that the coefficient of Za~b in Eq. (2.18) is 

given by 
1 + Xu~+ZM~+ + XM~- ZuB- -- XM~+ ~MB- -- ~ t~-  ZM~ +. (2.20) 

In the derivation of the above fact, it is useful to n o t e -  as was implicitly assumed in 
(2.18)- that ZM~+ L~tA- = ;~M~+ZM~- = 0 due to the internal consistency of the A and 
B lattices. 

It is now easy to show that 

~A~ = ~AeA °~e~(1 +p,2[ma+mz+ + m a - m B -  --ma+mn- - -ma-mn+]) ,  (2.21) 

where 

ma+ = L~ A- 1 E Wa(coA)Y.M~* (coa), (2.22) 

etc. 
At this point, it is worth noting that a small, but important miracle occurs. All 

things considered, (2.21) is a relatively simple expression. However, if we define the 
"magnetization variables" 

l l a=ma+ - m a -  , 

ldn:mB+ --rn B- , 

we have the still nicer expression 

(2.23a) 

(2.23b) 

(2.24) 

indicating that, in this system, there are fewer pertinent degrees of freedom than 
one may have initially anticipated. 

For  the coupled system, we have 

m+ - L r - 1 E  W(co)XM + (co) 

¢o 

: p e , . ~ -  l(mA+ + mn+ - p e ( m a + m , -  + rnA-mB+)). (2.25) 

The expression for m_ is obtained from (2.25) by exchange of the symbols + and 
- 2 Anticipating a (desirable) simplification, it is noticed that # = m+ - m_ is given 
by the formula 

I 2 = Pe[#A "-k/.t/j]/[ 1-1- pe2]AalAB']. (2.26) 

Any (Ising-type) system defined on the Bethe lattice in which the distribution of 
values of single-site magnetizations is stationary must be described by a 
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(distributional) equation of the form (2.26). Explicitly, we consider a random 
variable x. Let y and z denote two independent random variables with identical 
distribution. Then we seek a solution to the distributional system 

x ~ Pe(Y + Z)/(1 + peZyZ), (2.27a) 

with 

and 

x 7 y 7 z (2.27b) 

ylz~ y. (2.27c) 

IIc. Hag-Space Systems and the Isotropic Lattices by Quadrature 

Magnetic recursion relations similar to (2.12) and (2.27) have been derived by a 
number of authors in a variety of contexts [28-30, 8, 9, 26, 27]. Although our 
particular derivation in terms of the FK representation is new, it is similar to other 
derivations in that all have been motivated by considering systems described by 
the Hamilton functions (2.3) or (2.17) on the Bethe lattice. Given this motivation, 
one expects that solutions to such recursion relations should say something about 
the statistical mechanics of possible limiting systems described by these Hamil- 
tonians; for this reason, the equations are certainly worth studying in their own 
right. However, the exact connection between the recursion relations and concrete 
problems in statistical mechanics is not immediately obvious, and seems to have 
been overlooked in previous work. Indeed, even in the deterministic case, the 
physical interpretation of a solution to the recursion relations is far from clear. 

In this subsection, we examine the significance of the recursion relations and 
their solutions, and use this information to construct actual infinite-volume 
models whose magnetizations are described by these solutions (should they exist). 
Having constructed the infinite-volume half-space models, we then show that the 
half-space boundary fields can also be used to construct isotropic systems, and 
derive expressions for the magnetizations of the isotropic systems in terms of 
solutions to the half-space problems. 

Consider first the deterministic case. Here, the solution of the recursion 
relation (2.12) is just a number, m ~), which presumably corresponds to the 
magnetization at the origin in some infinite-volume system. This, however, gives us 
no clue as to what the magnetizations at the other sites should be in order that the 
magnetization at the origin be m ~®). Before addressing this question directly, let us 
first consider the easier problem of constructing some infinite-volume system. In 
the deterministic case, it is always possible to do this by applying wired boundary 
conditions to an increasing sequence offinite-volume half-space lattices, and using 
the fact that for any (not necessarily integer) n > 1, the FK random cluster measures 
so obtained are decreasing in the sense of FKG. Thus the sequence converges to a 
well-defined infinite-volume measure. Putting aside for the moment the question 
of whether the magnetization at the origin actually is m t~), it is obvious that the 
single-site magnetizations only increase on successive levels of the tree. (In fact, it is 
easy to show that the magnetizations strictly increase unless m ~) - 0 . )  Clearly 
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then, it is not the single-site magnetizations themselves which are constant, and 
hence correspond to solutions of a recursion relation of the form (2.12). 

What  we must do is discover a quantity which is constant from site to site of the 
iiafinite-volume system constructed above. A little thought shows that if x is 
located on the k th level from the origin, then the magnetization that x would have 
had were it decoupled from the first k - 1  levels of the tree is precisely the 
magnetization of the spin at the origin. Thus the quantity we are seeking-which is 
constant throughout the lattice - is the magnetization a spin would have in a 
hypothetical system in which that spin is decoupled from all spins on previous 
levels. Alternatively, in the F K  representation (with wired boundary conditions) 
this quantity is a condit ional  probability; indeed, it is just the probability that a 
particular site is connected to infinity, provided that it is only connected to sites on 
higher levels. 

With the above reasoning in mind, we will now construct the desired infinite- 
volume system. To do this, we use a procedure that is well-known in the theory of 
branching processes, and allows us to view (2.12) as an iterative map. Consider, 
then, an infinite sequence of n-state spin variables (for integer n>2) :  
s (i)o, s(1)l, s(1~2 . . . . .  which are independent, and acted on by identical external fields 
so as to produce some magnetization m (1) on each of the sites (see Fig. 6). 
Next, consider a second "wave" of spins s(2) o, s(2)l, ..., each coupled to a pair  of 
spins of the first "wave" with coupling strength corresponding to Pe: s(2)o is coupled 
to s(1) 0 and s(i)~, . . . ,  s(Z) k is coupled to S(~)2k and S~l)2k+l, etc. It is clear that the 
magnetization of the second wave, m (2), is given by the right-hand side of Eq. (2.12) 
as a function of m ~), i.e. 

m Cz) =fpe(m (l)) - p e [ 2 r n  ~I) +pe (n  - 2)(m~1))2]/[1 + p e e ( n -  1)(m(1))2]. (2.28) 

Now, we couple a third wave to the second in the same fashion, and so forth. In 
general, the magnetization of the (k + 1)~t wave is determined by the magnetization 
of the k th wave via 

m(k + l )  = fpe(m{k)). (2.29) 

s o x // s~ (3) s3 

s~ y' ~ s, 

_ (4) 

_ (5) 
5 0 

Fig. 6. A half-space problem 
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As a result, we have a discrete time dynamical system whose behavior we 
cannot resist pausing to analyze. Plotting fp , (x)  as a function of x, we see 
that there are three potentially interesting points: f~.(0)=0, fp.(1) 
= p e [ 2 + p e ( n - 2 ) ] / [ l + p e 2 ( n - 1 ) ] ,  and, if p e > l / 2  (or p~>l /2  when n=2),  
fpe(m ~)) = m (~), where m (®) is the unique positive solution to Eq. (2.12). 

A glance at the graphical construction in Fig. 7 indicates that any initial 
magnetization m(1)e (0, 1] converges to  m(m)(pe), and does so exponentially fast if 
p~>l /2 .  For example, the wired boundary condition construction discussed 
earlier is just the case in which we begin with m (1) = 1. Furthermore, if the external 
field was chosen so as to produce m(l)=m~)(pe) ,  then for every j, m U) will equal 
m (~). On the other hand, when Pe < 1/2 (respectively < 1/2 if n = 2), the inevitable 
result is zero magnetization. 

Even given the "backwards branching process" described above, it is not 
immediately obvious how to obtain meaningful thermodynamics on the tree, due 
to the large excess of surface. While this process ensures that the magnetization at 
the origin will be correct, it does not guarantee that the average (bulk) properties 
will settle down. Indeed, from the above discussion, we see that unless we start with 
m (~) = m(~°)(pe), the large fraction of sites "near infinity" will not have magneti- 
zations close to those of sites "deep inside the tree." The solution is to take the 
thermodynamic limit in two steps: Consider a large tree of radius RI inside a huge 
tree of radius RE >> R1. From the backwards branching calculations, it is clear that 
the boundary of the large tree will have iterates m (Rz-le') which are close to m ~), 
and that these converge as R2--*oe. We may then take R1--,oe to obtain well- 
behaved thermodynamics. 

One can also do the backwards branching process in the context of random 
systems. Here, however, the initial configuration of magnetizations should be 
distributed according to some random process. Although this is easily done by 
applying a random field to the first wave, for a possible future purpose, we will 
explicitly construct our random field as follows: Behind the first wave of spins, we 
place a zeroth wave of spins with alternating plus and minus signs: s(°) o = + 1, 
s(°) 1 ~ -  - -  1 ,  S ( 0 )  2 = "~- 1 . . . . .  Let us emphasize that the s(°) k are fixed, and should not 

f Pe(X) 

./ 
. / /  

..// 
./" 

.../" 

Fig. 7. Magnetization dynamics: the supercritical case 

[2 + Pe(n-2)] 

[1 + p ~ ( n - 1 ) ]  
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be considered dynamical degrees of freedom. We now consider a sequence of pairs 
of bonds (Jk +, Jk- } I k = 0, 1,... ) which couple the plus and minus spins, S(°)ak and 
s(°)zk + 1, to the k th spin of the first wave. Depending on the values of {Jk +, Jk-}, we 
can compute, as separate entities, the quantities m+(1)k, m-(1)k, and 
#(1) k = m + (1)k -- m- (1) k. The pairs {Jk +, Jk- } are (identically and independently) 
assigned values according to some distribution, which in turn produces a 
distribution of magnetizations for the first wave. We then proceed, as in the 
previous example, to couple the second wave to the first with coupling strength Pc- 
The # variables in the second wave will be distributed according to the right-hand 
side of Eq. (2.27) with y and z independently distributed in accord with the 
distribution of magnetizations of wave one. And so the process continues. 

It should be emphasized that succeeding generations inherit their # value 
exclusively from the # value of the previous generation - regardless of how these 
values were produced. [For example, if # is "small," this could be due to 
cancellation of m ÷ and m- which are O(1), or it could be that m + and m- are 
individually small.] This is exactly the reason we set the initial distribution up with 
"external spin pairs" rather than with an external field. The latter does not allow 
independent control over m+(1) k and re-(l) k. At any rate, it is clear that should we 
find a solution to the system (2.27) and concoct (via the {Jk+, Jk-}) an initial 
distribution according to this solution, this distribution will persist in each 
successive wave. This does not, however, automatically imply that the joint or 
marginal distributions of the m e(J) are themselves stationary. 

Having established the half-space problems as bona fide models in their own 
right, it is worthwhile to make contact with the more popular "isotropic" models 
(see Fig. 1). Although the procedure is pretty much the same in the deterministic 
and random systems, we will do the calculations separately in order to make 
explicit yet another miracle. 

Even in an isotropic system, the iterates m I j) are meaningful. In the language of 
spin systems, these quantities, of course, correspond to what the magnetization on 
the jth level (away from the boundary) would have been had we decoupled the 
spin from the back half of the lattice (or to conditional probabilities in the FK 
representation). From our construction above, it should be clear that, given 
the proper choice of boundary conditions, these conditional magnetizations are 
isotropic on the full lattice. It remains to be shown that the full magnetizations 
are determined exclusively by these half-space quantities. 

The interpretation of the m U) as conditional probabilities is the key to deriving 
the full-space quantities. Given two (finite) pieces of half-space lattice, o~f" L and J(g, 
we would like to join them together to form a finite piece, g/g, of the isotropic 
lattice. We will do this by attaching a bond, b, between the two base sites, xt. and 
XR, as indicated in Fig. 8. 

Denote by ~L and ~R the partition functions of the two (independent) half- 
space lattices. As before, we divide random cluster configurations, m, into 
(mL, mR, ~b), and denote by ML (MR) the event that XL (XR) is in the connected 
component of 0 ~  L (O.~rR). Thus the left half-space magnetization at xL is 

mL -- ~Z.-1 Z WL(mL)ZZvtL(mL), (2.30) 
O L  



60 J.T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless 

Fig. 8 

with a similar expression for m R. Following the reasoning behind Eq. (2.8), we have 

W(co) = WL(COL) WR(COR)Bpe([b) [1 + (n--  1)Zb(~b)ZML(COL)ZMR(COR)] , (2.31) 

which implies 
= ~LLr~[1 +pc(n--  1)mLmR]. (2.32) 

The isotropic magnetization, mL, of the site XL in the full lattice Y may be 
computed via (2.31) and the relation 

ZyL = ZML + (1 -- ZML)ZbZM,,, (2.33) 

where _M L is the event that XL is connected to ~ Y  = OJgLUOJfR. Thus, 

m L = [ m  L + pemR + (rt -- 2 ) p e m r m s ] / [ 1  + (n - l ) p e m L m R ] .  (2.34) 

Evidently, if all the half-space magnetizations are given by m ~)  [a solution to Eq. 
(2.12)], the isotropic magnetizations are found to be 

_m = m~°~)[l + p ~ + (n - 2 )p em( ~ )]/[1 + (n -- 1)p~m(°~)]. (2.35) 

The derivation for the random case follows in a similar fashion. We again 
consider two pieces of half-space lattice, ~ffL and S/f R, this time equipped with some 
(as yet unspecified) boundary conditions (al~o~ffL) [respectively (a]OJ~ffR)]. Defining, 
as usual, the hidf-space plus and minus magnetizations, mL+, mL-, mR +, and mR-, a 
calculation similar to preceding ones gives the following expression for the 
weights: 

W(og) = WL(COL)WR(COR)Bp.((b) [1 + Zb(ZML+ - ZM~- )(ZM,+ -- Z~t,- )] , (2.36) 

and the total partition function: 

~. = ~L~#R[1  -t- Pe#L#R] , (2.37) 

where as before, # L = m L  + - -mL- ,  etc. Observe that these are still the half-space 
quantities. Next let us compute the full-space "plus magnetization," _mL +, which is 
given by the expression 

re_L, = ~ -  1 2 W(o))XyL~ (co), (2.38) 

where is ZyL+ (co) given, explicitly, in terms of half-space quantities by the formula 

Z~_L+ = ZM~+ + (1 -- XML+)ZbZM~+ " (2.39) 
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Thus, we find 

m_L + = [mL + + pemR + -- Pe(mL + mR-  + mE- mR +)]/[1 + Pe#E#R] (2.40) 

with a corresponding expression for m L-. Using the above formulas, the quantity 
_~L admits the relatively simple expression in terms of the corresponding half-space 
quantities: 

I.tz = [#L + Pc#R]~[ 1 + Pe#E#R]" (2.41) 

Assuming, then, that due to a clever choice of initial condition, we can produce 
distributions of {#i} which "settle down" as j - - , ~ ,  one can compute the 
corresponding distribution of the full-space quantities. Indeed, one need only 
integrate the above formula with #L and #R independent and identically 
distributed according to the limiting distribution. 

The full-space models can now be constructed via our knowledge of the half- 
space quantities. 

IH. Analysis of Moments 

In this section, we begin our analysis of the magnetic recursion relation (2.27) for 
the half-space random Ising system. As we have already learned, the half-space 
problems are well worth analyzing in their own right and, provided that a solution 
to the system (2.27) can be unearthed, the solution to the full-space problem can be 
constructed via (2.41). The main results of this section are summarized in Fig. 3 of 
the introduction; the bifurcation analysis of Sect. IV does not depend (explicitly) 
on any of these results. 

Before we begin, it is worth simplifying the system (2.27) - and our notation - 
somewhat. To this end, first observe that no limiting distribution can have support 
outside [ - m  (~), +m(°~)]. (This follows from the F K G  inequality.) Thus for 
p > p c = l / 2 ,  we can scale our variables so that they live on a temperature- 
independent interval. We define 

X - x / m  (~) , (3. la) 

Y -  y / m  (°~), (3.1 b) 

Z - z / m  (~) , (3.1c) 

so that (2.27a) becomes X = Pc[ Y + Z]/[1 + (.peru(°°)) 2 YZ]. For simplicity of future 
derivations, we will (by abuse of our earlier notation) drop the "effective" subscript 
on Pe and simply use the variable p, which (since n = 2) is related to the inverse 
temperature by 

p = tanhfl. (3.2) 

Finally, we also define 3 

re(p) - prn ~ o~)(p) = [(2p - 1) + ] 1/2, (3.3) 

3 m(p) is actually the magnetization of a site attached to the origin of a half-space system by a bond 
of strength p 
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where ( )+ denotes the positive part of the function. In terms of these quantifies, the 
distributional system (2.27) becomes 

X ~ p[Y + Z]/[1 + m z YZ] =- F(Y, Z), (3.4a) 

X = Y = Z ,  (3.4b) 
d d 

YIZ 7 Y' (3.4c) 

with 0<  ISl, IYI, IZl_ <-I. 
Ultimately, we would like to show that the random Ising system can support a 

spin glass phase. If such a phase exists, it must have a nontrivial symmetric 
distribution of magnetizations obeying the recursion relation (3.4); in particular, 
powers of (3.4) give coupled equations for the moments of such a distribution. It 
turns out to be impractical to attempt to establish the existence of a spin glass 
phase simply by studying moments of the distribution; at best, moments of low 
order give perturbative information on the magnetizations of such a phase, should 
it exist. For this system, one should be especially wary of purely perturbative 
statements, since if there is a spin glass phase, its magnetizations must be supported 
on a compact interval, and (in the final analysis) this type of behavior can only be 
achieved through the effects of nonperturbatively high moments. 

In spite of the above considerations, a careful moment analysis enables one to 
make definite statements on the spin glass phase, should it exist, and suggests a 
starting point for a more complete treatment. This is the subject of this section. 

Although it is not the purpose of this paper to discuss ferromagnetism, we 
begin this section with a brief analysis of nonsymmetric distributions. 

Next, in Subsect. IIIb, we use a moment analysis to locate the critical point of 
the spin glass phase (again, should it exist). We do this by studying the second 
moment q---E(X2), which is the (rescaled) Edwards-Anderson order parameter 
(1.2). The critical point is located in two steps: First, we show that there cannot be a 

spin glass phase (i.e. q = 0) ifp < 1/V~. Second, we show that, regardless of whether 
a distribution satisfying (3.4) exists, all but a finite number of the iterates of the 
second moment of any nondegenerate symmetric distribution lie within a strictly 

positive "stable band" whenever p > 1/V~. This allows us to identify pG = 1/V~ as 
the spin glass transition point. Furthermore, as a corollary to the stable band 
analysis, we obtain the critical exponent for the Edwards-Anderson order 
parameter: q(p),,~ [p- p J ~  with fla = 1 as p ~ PG. At this time, it is not clear whether 
this is indicative of the critical behavior (if any) of spin glasses in high dimension. It 
is, however, worth noting that//a = 1 also seems to hold in the infinite-range (SK) 
model of a spin glass. 

Finally, in Subsect. IIIc, we examine an appropriately rescaled form of the 
magnetic recursion relation near Pa. The interesting property of this relation - 
which constitutes the starting point of our analysis in Sect. IV - is that it can be 
solved exactly at Pc. 

Ilia. Some Parting Remarks About Ferromagnetism 

Before confining attention to symmetric distributions, it is worthwhile, at least as a 
warm-up, to spend a few paragraphs discussing (3.4) as a description of an honest 
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ferromagnetic system. Clearly, below pc= 1/2 the only solution to the distri- 
butional system (3.4) is a point mass at the origin X = 0, corresponding to the 
paramagnetic phase. However, above Pc, the system prefers the ferromagnetic 
state: 

Proposition 3.1. Whenever p > Pc = 1/2, the paramagnetic solution to (3.4) is unstable 
to ferromagnetism. 

Proof. All that need be observed is that if the initial condition has a distribution 
which vanishes outside some small region, e.g. Prob [I Y[ > e] = 0, and, accordingly, 
has small first moment [say E(Y)=ek  with k=O(l ) ] ,  then the subsequent 
distribution given by (3.4) will have 

e-  1E(X)= 2pk[1 + O(e2)] > k (3.5) 

for e sufficiently small. Thus, a point mass at the origin is an unstable 
distribution. [] 

This result can be strengthened somewhat via: 

Proposition 3.2. Whenever p > 1/2, any nondegenerate initial distribution with no 
support on negative values has iterates that converge to the ferromagnetic state, 
which, in the language of (3.4) is a point mass at unity. 

Proof. Let X,,  Y~, Z.  be random variables distributed according to the n th iterate of 
the initial distribution. It is not difficult to see that V n, Prob IX,  < 0] = 0. Let us 
denote by k. and q, the first moment and variance of the n th distribution: 
k. =- E(X.), q . -  E(X.Z). We have 

X .  + , 7 pE Y. + Z.]/[  l + m2 Y.Z.] 7 p[ Y. + Z.]/[1 +m z] 

+m2p[y .+z . ]  [1 - Y.Z.]/[1 +mZY.Z.] [1 + m  2] ; (3.6) 

hence, since 1 + m z Y.Z. < 1 + m 2 = 2p, 

k. + 1 > 2pk./[1 + m 2] + 2mZpk.[1 - q.]/[1 + m z] 2 

= k,[l  + (m2/(1 + m2)) (1 - q,)]. (3.7) 

Thus, unless kl =0,  the k, form a monotone sequence which, after a little thought, 
is seen to converge to one. [] 

Remark. We strongly suspect (but cannot yet prove) that the iterates of (3.4) are 
even more unstable to ferromagnetism than indicated by Propositions 3.1 and 3.2. 
This should not be disturbing to the reader since the random variables under 
discussion pertain to the gauge transformations of the actual magnetizations. 
When the magnetic interactions are equally likely to be of either sign, it is seen that 
the set of ferromagnetic boundary conditions (i.e., those with nonzero first 
moment) are of measure zero. Furthermore, it is easy to demonstrate that Eq. (3.4) 
maps symmetric distributions into symmetric distributions. 

From a slightly different point of view, suppose we construct the spin glass 
problem iteratively (as in Subsect. IIc) - keeping track of the actual magneti- 
zations. Then, at each stage of the iteration, the couplings must be selected 
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according to some random process. By the time the second wave is coupled to the 
first, regardless of the initial distribution, the magnetizations in the second wave 
are described by a symmetric distribution (with probability one). Indeed, the 
distribution in the second wave is given by Eq. (3.4a) after symmetrization of the 
random variables on the right-hand side. 

Thus, although the system is unstable to ferromagnetic perturbations, the 
quenched randomness provides an infinite restoring force towards the space of 
symmetric distributions. Henceforth, we will (safely!) restrict attention to this 
space. 

IIIb. Location of the Spin Glass Critical Point 

Here we examine the system (3.4) in the space of symmetrically distributed random 
variables. 

For  all values of p, one solution to (3.4) is a degenerate distribution: that is, 
X = 0 with probability one. Our first result concerns the stability of this solution. 

Proposition 3.3. The degenerate distribution is a stable solution to (3.4)/f 2p 2 < 1, 
and is unstable if 2p 2 > 1. 

Remark. In the borderline case, that is 2p 2 = I, the degenerate distribution is also a 
stable solution, but this result follows from a slightly more detailed analysis. 

Proof. As before, let us assume that Y is not identically zero, but Prob [Y>  e] = 0 
and define qo = e-IE(y2) • Squaring both sides of (3.4a), we have 

X2 7 ply2 + Z 2 + 2 YZ]/[1 + m E YZ] 2 . (3.8) 

Defining q l = e-1E(X2), we have [noting that E(YZ)= 0 by symmetry] 

ql = 2pZ qo( 1 + O(e2)) • (3.9) 

Thus the second moment grows if 2p 2 > 1 and decays if 2p 2 < i. D 

From the preceding analysis, it is already clear that there is a transition of some 

sort going on at p = 1/~/2. Most of the rest of this section will be devoted to a 
detailed, nonperturbative treatment of the system (3.4), both above and below this 
point. Our principal results are: 

A) global stability of the degenerate distribution if 2p 2 __< 1, 
B) existence of a "stable band" of allowed values of variances when 2p 2 > t (see 

Fig. 3). 
Since the details of how A) and B) are established are not essential for the later 

analysis, Lemma 3.5 and Propositions 3.6--3.9 may be omitted without loss of 
continuity. For  the benefit of the impatient reader, we will prove a weaker 
analogue of A) which has the virtue that it can be "seen immediately." 

Proposition 3.4. I f  2p2/(1-m2)2 <l  (i.e. if p< 2 -~r2 ) ,  then the degenerate 
distribution is globally attracting. 

Proof. Using the notation Xn, Y~,Z, for the random variables distributed 
according to the n th iteration of (3.4a), we have, squaring both sides, 

Xn+12aF2(yn, Z) ap2[y,2+ Zn2-l-2YnZn]/[1 +m2ynzn] 2 . (3.10) 
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However, F2(y, Z)<=pZ[y2+ Z z +  2 Y Z ] / [ I -  m2] 2 whenever [Y[, IZl ~ 1, so that 

EEX. + ~ 23 = EEF2(K, Z , ) ]  < 2p2/(1 - -  m2)2E[ y z ] .  (3.11) 

This means that if q. is the variance of X., then 

q, < [2p2/(1 -- m2)2]" , (3.12) 

and hence is converging exponentially fast to zero. [] 

The key to the proof of A) and 13) is the following: 

Lemma 3.5. I f  m2< 2/3 (or p < 5/6), then F2(y, Z) may be expressed in the form 

F2( y, Z) = p2( g2 + Z 2) + 6)odd( y, Z) - R( Y, Z) 

with R(Y, Z) pointwise positive, and ~9odd(Y, Z) an odd function of Y or Z. 

Remark. The value p =  5/6 is of no real significance, and could possibly be 
improved by a more detailed expansion of the type given below. (This would 
involve an attack on the fourth and higher moments.) Since the difficulty of these 
enterprises increases exponentially with ambition, we will be content with Lemma 
3.5 as it stands. 

Proof. We write the identity (valid whenever 2:~ - 1 )  

1/[1+212=1-22+322-423+524/[1+)~]2+425/[1+2] 2, (3.t3) 

which the reader is invited to verify. Using the above formula on 1/[1 + m 2 YZ] 2, 
we have 

F2(y, Z) = p2(y2 + Z 2) + 6)oaa(y, Z) - R(Y, Z) (3.14) 

with ~9od a not worth computing and 

R(Y, Z) = 4m2p 2 y E z 2  -- 3m4p 2 yEZ2(y2  + Z 2) 

+ 8m6p2 y 4 z 4 _  5F2(y, Z)m s y 4 z 4 _  4F2(y, Z)m 1 o ysz5"  (3.15) 

Our job is to show that this is positive for the range of p indicated. 
Observe that since F 2 is neither even nor odd, we can conclude nothing about 

the parity of the last two terms without further expansion. For the range of p under 
consideration, this turns out to be less efficient than the (universal) observation 
that FE(y, Z) cannot exceed one. 

Let us go to work on the first two terms: 

4mZp 2 yEZ2 - 3m4p 2 y2zE(y2 d- Z 2) ~- 4m2p 2 y2Z2 [-1 - (3/4)m2( y2 + Z2)] 

4m2p 2 y2Z2 [-1 - (3/2)m 2] __> 0 (3.16) 

if m E __< 2/3. 
That the remaining three terms add up to something positive follows from our 

universal observation. Indeed, rolling up our sleeves, we have 

8m6p2 y4z4  _ 5F2(y, Z)m s y4z4  _ 4F2(y, Z)m 1 o y5z5 

= m 6 Y4Z*(Sp 2 - 5F2m 2 - 4F2m 4 YZ)  

> m 6 Y4Z4(2 - m 2 - 2m4), (3.17) 
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where in the last step we have used m 2 = 2 p -  1. The reader is invited to check that 
the final line in (3.17) is positive provided that m2<(1/4)[(17) a/2-1] - which 
actually exceeds 2/3! [] 

We are now prepared for: 

Proposition 3.6. I f  2/)2=< 1, the degenerate distribution is the unique, globally 
attractive solution of the system (3.4). 

Proof. Starting from any initial distribution, we have, at the n th stage 

q,+ ~ = 2p2q, -- k"[R(Y,, Z , ) ] ,  (3.18) 

since E[tgodd(Y, Z)] =0  by symmetry. If 2p2< 1, we may discard the (positive) 
remainder in (3.18), and watch exponential convergence of q, to zero. When 

p = 1 / ~ ,  we simply retain the first two terms in R, and use our bound (3.16). In this 
case, we have 

q, + 1 < q, - rqn 2 (3.19) 

with r = 4m2p2[l - (3/2)m 2] evaluated at p = 1/V2. Here, the convergence may not 
be as fast, but the end result is the same. [] 

When 2p 2 > 1, the existence of the upper limit is established in pretty much the 
same fashion: 

Proposition 3.7. Suppose 5/6 __> p __> 1/1/~. Then, given any initial distribution, all but 
a finite number of its iterates under (3.4) have variances bounded above by 
q~ - (2p 2 - 1 )/(4p 2mZrl (t9)) with r 1 (P) = 1 - (3/2)m 2. 

Remark. The above statement is obviously devoid of any significance when the 
upper bound exceeds unity. This, in fact, occurs even earlier than p=5/6.  
Nonetheless, we proceed in the spirit of the remark following the statement of 
Lemma 3.5. 

Proof. Retaining only the first two terms of R(Y, Z) and repeating the reasoning 
used in (3.19), we have the following inequality between the n th and ( n + l )  st 
variances 

q.+ 1 <---- 2p2q . - -  4p2m2rl(p)qn 2. (3.20) 

< , Let q[, be defined as in the statement of the proposition. If q, = qv, a worse bound 
than (3.20) is 

q,+~ <q~.  (3.21) 

It is thus seen that when the initial distribution starts with a variance smaller than 
q~:, this condition persists for all n. 

In the opposite case, i.e. when the initial variance starts above q~:, we may 
iterate (3.20) as though it were an identity to produce a sequence of uniform upper 
bounds on the q,. [This follows from the fact that q -  4pmZrt(p)q 2 is increasing in q 
for 0 < q < 1 ,] This sequence of upper bounds converges (exponentially fast) to q~:. 
However, once one of the actual q, gets close enough to qb, a slight improvement of 
the bound R(Y,Z)>4pm2rl@)YzZ 2 will push the succeeding q's strictly 
below qb. [] 
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For the lower piece of the band - which is the one of more importance when 

p > 1/1/2 - the derivation follows with relative ease: 

Proposition 3.8. Suppose 1/V2<p=<l .  Then, given any nondegenerate initial 
distribution, all but a finite number of its iterates under (3.4) have variances bounded 
below by qL =- (2P 2 - 1)/(4p2mZ) • 

Proof. We first observe that the identity 

1/(1 + 2) 2 = 1 -- 22 + 22(3 + 22)/(1 + 2) 2 (3.22) 

is valid provided 2 ~  - 1. Note  that for 121 < 1, the third term is nonnegative. This 
gives 

F2(y, Z)  ~ 2p2(y2 + Z 2) _ 4pEru2 y2z2  + "odd term." (3.23) 

Hence, we obtain the recursion inequality 

q, + ~ >= 2pEq, - 4p2mEq, 2 . (3.24) 

Defining qL as above, it is seen that once any variance exceeds qL, so do all the 
subsequent ones. This obviously handles the case in which we start out with a targe 
enough q. On the other hand, when the initial q is small (but nonzero by 
hypothesis), it is not difficult to show that (3.24) will provide a sequence of lower 
bounds which quickly places the actual q, within "striking distance" of qL. The 
argument is completed along the lines of the preceding proposition. [] 

Finally, it is worth showing that in the asymptotic regime, the upper and lower 
bounds actually coincide to first order. 

Proposition 3.9. As p ~ 1/]//2, there is a qv satisfying the conclusions of  Proposition 
3.7 with the property that 

lim 1/u£qu(p)4p2m2/(2p2 - 1) = 1. 
p 

Proof. Examining the expression (3.15) for R(Y, Z), we easily obtain the recursion 
inequality 

q, + 1 <-<_ 2p2q, - 4p2m2q, 2 + O(q,t,), (3.25) 

where t, = ECXn4]. Next, an uninspired examination of the fourth power of 
Eq. (3.4) permits the inequality 

t, + 1 < 2p4t, + A(p)q, 2 , (3.26) 

where A(p) is generously estimated by 

A(p) < 65p4/(1 - mz) * . (3.27) 

Thus, eventually, t, < q'v2[A(p)/(1- 2p*)]; i.e., the fourth moment is of the same 
order of magnitude as the square of the second. Equation (3.25) becomes 

qn+ 1 <-<- 2p2qn- 4pZmZqn2 + O(q'v3) , (3.28) 

from which the result is easily derived, l~ 
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We thus arrive at the picture (Fig. 3) described in the introduction. On the basis 
of this alone, we deserve the luxury of calling p = 1/1/-2 the spin glass point PG. As an 
obvious consequence of the preceding analysis, we also have: 

Corollary. I f  there is a spin glass (i.e. nondegenerate, symmetric) solution to the 
system (3.4) in a neighborhood of Pc, then the critical behavior of the Edwards- 
Anderson order parameter is given by 

q(p) ~ [p -- pdaG 
with fig = 1. 

HIc.  Behavior at Pc 

As a consequence of Proposition 3.6, we already know that the distribution of 
magnetizations at Pc is degenerate. This is not, however, the full story. Indeed, the 
upper and lower bounds of Propositions 3.7 and 3.8 suggest that, in the 
neighborhood of Pc, we should once again rescale our variables. Anticipating the 
order of magnitude of the asymptotic variances, it is natural to try 

X* = [I/~/A-]X, (3.29a) 

Y* = [1/V-A- ] Y, (3.29b) 

Z* = E1/V~]Z, (3.29c) 

with A = P - P c .  Under the above change of variables, (3.4a) becomes 

X* 7 PlY*  + Z*]/[1 + Am 2 Y'Z*] (3.30) 

with - [1/[/~-] <X*,  Y*, Z* < [I/]/A-]. 
Now as p + Pc, (3.30) becomes 

X* ~ (1/V2) [Y* + Z*],  (3.31) 

which the reader will recognize as the addition law for normally distributed 
random variables. This provides us with a second reason for denoting the critical 
point by Pc. 

The solution to (3.31), however, is of undetermined width. Thus, the "density" 

~(X*) = (zw 2) - 1/2 exp [ - X*2/a 2] (3.32) 

with any value of a might be deemed acceptable. That this is not the case has been 
demonstrated in Proposition 3.9. Here one sees (formally) that for p near Pc, q is 
given by 

q(p) ~ A/p~m2~G) , (3.33) 

which implies 

a 2 = 2q(p)/A ~ 2/pGm2(pc). (3.34) 

Such a result (which is not devoid of physical significance) will be encountered 
again when the question of existence of solutions to (3.4) is addressed. 
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IV. Existence of a Spin Glass Near Pc 

In this section, we establish our principal result: namely, that the random Ising 
system on the Bethe lattice supports a spin glass phase with a nontrivial symmetric 
distribution of magnetizations, Ca, which is a fixed point of the integral equation 
(1.4). As we will see, the spin glass magnetizations are distributed according to a 
density which bifurcates from the trivial delta function solution at PG. That the 
solution is a density excludes certain pathological behaviors (e.g., Q~ can have 
nothing worse than integrable singularities). 

Our proof begins with the observation made at the end of the previous section. 
There it was noted, at least formally, that if we rescaled the magnetization variables 

by 1/[/A with d - p - P G ,  then at PG the recursion relation reduces to the addition 
law for Gaussian random variables. Of course, since this scaling is singular at PG, 
we have no guarantee that the Gaussians are actually related to the problem at 
hand. Nevertheless, together with the instability of the delta function solution for 
p>p~, this rescaling suggests that a new solution may grow from one of the 
Gaussians. 

A natural approach to the problem is to attempt a rescaled moment analysis by 
calculating corrections in d to the Gaussian addition law. If one does this, one finds 
that the 2n th moment is described by an equation which to leading order in A has 
terms involving all previous (even) moments. There are several difficulties with this 
program. First, it seems that the coefficients of such a perturbation theory grow 
extremely rapidly with n. Second, a detailed analysis (see Sect. Vc) indicates that 
nonperturbative effects are significant in this system. 

For the above reasons, we have approached the question of existence of a spin 
glass state as a problem in bifurcation theory; in other words, we are going after a 
function which completely describes the distribution of single site magnetiz- 
ations, rather than simply attempting to calculate its moments. To do this, we 
(temporarily) abandon the random variable equation (3.4), and look instead at 
an integral equation describing the distribution ffA(X) of these random variables: 

+ 1  

~a(x) = ~ Qa(y)Q~(z)6(x-- F(y, z))dydz, (4.1) 
- 1  

where - 1 <_ x, y, z_<_ 1, and 

F(y, z) = p[y + z]/[l + m2yz] (4.2) 

as before. Now despite the fact that the right-hand side of (4.1) is not well-defined 
for a general density 0~, it still can be interpreted by means of the usual formulas. 
Since this leads to a rather cumbersome expression, Eq. (4.1) will be written 
properly for the first and last time: 

+ 1  

Q~(x) = p I Qa(y)~n([x- py]/[p- mZxy]) ([1 - mZy]/[_p- mZxy]2)dy. (4.1/) 
- 1  

Henceforth, when we use the informal notation of (4. I), it will be understood in the 
sense of (4.1'). 

Our principal result is that for p sufficiently near PG (i.e., A > 0 sufficiently 
small), there is a unique density QA satisfying Eq. (4.1), and hence describing the 
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single site magnetizations of a spin glass. As A + 0, the solution collapses to a delta 
function - which is a Gaussian in the rescated variables - with a width vanishing 
linearly in A. 

The solution is also somewhat interesting from the viewpoint of bifurcation 
theory. First, being a density, it lives in a different space than the delta function 
solution from which it bifurcates. Second, as we have already seen, the system has 
"too many solutions" at P c -  a Gaussian of any width satisfies the rescaled form of 
(4.1) when A = 0. This is indicative of a scale invariance symmetry which is broken at 
nonzero A ; it is precisely the breaking of this symmetry by nonlinearities that picks 
out the Gaussian of the "correct width." Third, the fact that (4.1) is an integral 
(rather than a differential) equation means that it has certain "smoothing 
properties." As a consequence, despite the fact that the unperturbed (rescaled) 
equation is defined on a noncompact space, the linear operator has a discrete 
spectrum. 

The outline of this section is as follows: In Subsect. IVa, we formulate a 
decompactified version of the rescaled problem and state our main theorem. In 
Subsect. IVb, we study the linear operator of the decompactified problem, and 
compute all of its eigenvalues and eigenfunctions at Pc. Although the principal 
purpose of this section is to prove an (abstract) existence theorem, these 
eigenfunctions are of some independent interest. Indeed, once we have established 
the existence of a spin glass solution, these are the functions which best describe 
perturbative corrections to the Gaussian for p > Pc. The existence of a nontrivial 
solution is established in Subsect. IVc, and positivity of the solution is shown in 
Subsect. IVd. 

IVa. Preliminaries and Statement of Principal Results 

The purpose of our analysis is to find a positive function 04 e L I ( [ -  1, + 1]) which 
is a solution to the integral equation (4.1). Our methods include use of the implicit 
function theorem, together with "exchange of stability" arguments. For this 
reason, it is convenient for the "known solution" [i.e., the Gaussian(s) at p = Pc] to 
live on the same space as the purported family of new solutions. Clearly 
LI([--1, + 1]) is a disaster! An obvious remedy is to use the rescaled intervals 

[ - 1 / ~ ,  + 1/V~-], but this suffers the annoying habit of changing - albeit 
continuously - with the parameter A. Our resolution of these difficulties (which is 
by no means the only one) is to always work on Lt(R). This will require some 
preliminary legwork that the authors feel is well worth the trouble. 

Definition. Let • :  [ - 1, + 1] --.~ be a C °, invertible, symmetric function which is 
the identity in a neighborhood of the origin. We define Ca(x) = ~(xl/A-), so that 

Cn : [ -  1/l/~-, + 1/]/~] --.R goes continuously to the identity as A tends to zero. 
The fixed choice of • (or ~a) induces a compatible map between LI(R) and 
L1([-1, +1]): 

(o : LI(~Q-~LI([  " -  1, q- 1]) (4.3) 

according to 
q)s(x)=f(q~(x))qY(x) a.e., (4.4) 



Mean Field Spin Glass 71 

with a similar definition for q~;I(x). Observe that the factor ~'(x) [respectively 
e l (x ) ]  ensures preservation of the norm under these induced maps. 

We will be concerned with the decompactified version of(4.1). Let us therefore 
start by defining the family of nonlinear operators o~a : L I (R)~LI (N) ,  given by 

o~a(f) = q~a- * (gf'a(q~a; y)), (4.5) 

where o~fa is the rescaled (or "stretched") version of the right-hand side of (4.1): 

o~(h) [x] = _ ~ h(y)h(z)~(x - F~(y, z))dydz (4.6) 

and F,~(y, z) is determined from Eq. (3.30): 

F~(y, z) = ply + z]/(1 + A m2yz] (4.7) 

with - !/]//AA =<_ x, y, z_< t/~/'A. Of course, ~ can be defined all at once by the single 
expression 

+ll/~tl 1 
o~a(f) [4] = _ ~/g~ r0a; y(Y)q~a; y(z)6(Oa- (4) -  Fa(Y, z))dydz, (4.8) 

but it is probably best to follow through the thought process dictated by (4.5)-(4.7) 
the first few times. 

At any rate, we are now seeking an f e  LI(R) which satisfies 

f = o ~ a ( f ) .  (4.9) 

The principal result of this section can now be stated: 

Theorem 4.1. Provided that A is sufficiently small, there is a unique one-parameter 
family of positive, symmetric L 1 functions, fa, with [[fn II1 = 1, satisfying Eq. (4.9). 
The family has the property that 

lim f~ = ff~* 
A--*0 

with ~" a (normalized) Gaussian of width az: 

qC~(x) = (na z)- 1/2 exp [ - xZ/cr 2] 

and (a*) 2 = 2/[Po(ZpG- 1)]. 

Theorem 4.1 implies the much desired: 

Corollary. For A > 0 sufficiently small, there is a spin glass solution to the system 
(4.9) described by a density Q~(x). The A ~ 0 limit is singular; however, under the 
scaling Oa(x)-~]// AQn(x/l//-A), the limiting function is Gaussian with width (a*) 2. 

IVb. The Linear Operators and Their Eigenfunctions 

Despite the somewhat formidable appearance ofo~ a, the operator is quite simple at 
A = 0. Indeed, here ~-~ is just a rescaled convolution operator, and Eq. (4.9) reads 

f (x)  =pG -11f(Y)f(x/pG-y)dy,  pG-1/]/~, (4.10) 
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the solutions of which are the Gaussians, f~%. (The reason for the 0 subscript will 
become clear shortly.) 

Given a known solution to a functional equation, a natural tool is the implicit 
function theorem. Of course, in our case, this must fail at some stage since 
Proposition 3.9 assures us that positive solutions to (4.9) [or (3.4)] are not of 
arbitrary width. More explicitly, the discussion at the end of Sect. III demonstrates 
that only one of the solutions to (4.9) at A = 0  can conceivably give rise to solutions 
when p > po. 

Observe that Eq. (4.9) can be written as 

JA ( f )  = Ba(f, f )  - I ( f ) ,  (4.11) 

where I is the identity operator and Bz is the bilinear operator 
+ 1/ga 

Ba(f; g)[~] = _:udq~d;:O:)q~a;o(z)b(~-l(~)-Fa(y,z))dydz. (4.12) 

Of the standard conditions under which the implicit function theorem is 
known to hold, the most important one is that the linear operator 6/6fYn - 
assumed to exist - is invertible when evaluated at the "known solution." For our 
problem, the failure of this condition is a consequence of the following: 

Proposition 4.2. For all 0 <= A < 1 - 1/]/~ the Frkchet derivative g)/6f Y~(g; • ) exists. 
Furthermore, if L f f  is defined by 6/6f~--a(f#%;. ) - L 4 ~ - I ,  then for all a > 0 ,  the 
spectrum of  Lo ~ consists of  the points (2p~"[n=0, 1,2, ...). These points are 
eigenvalues and the associated eigenfunctions, denoted by fq~,(x), are the Hermite 
polynomials H,(x/a) multiplied by fg%(x): 

f$~,(x) = ~"( -  1)"d"/dx"ff%(x), La~(ff~,) = 2pG"(¢~,. 

Proof. Since Ba is bitinear, it is easy to verify that for any 0 ~ L ~, the Fr6chet 
derivative of J-d at g is 

6/6f  g-A(9; tl) [~] = 2 S g(y)tl(z)6(~ a-  1( 4 ) -  F A(y, z ) )dydz-  t l(~)- L~(g; rl)-  q . 
(4.13) 

As A ~ 0, this becomes a linear convolution operator, so that, in particular, 

Lo = 6/6f°~(ff~o)]~ = o(q) = 2po- a ~ ff%(x/po - y)q(y)dy. (4.14) 

The calculation of the spectrum of Lo is a straightforward exercise which we 
will perform at unit width. Let fro -= f#%, and denote by f~o the Fourier transform 
of fro. The (standard) Hermite polynomials are defined by the Rodrigues formula 

Hn(X) = f#o - ~(x) ( -  1)ndn/dx"ff o(X) . (4.15) 

Now, we use the identity 

No(k) = [f~o(pok)] 2 (4.16) 

to deduce that 

[p -1 ~ (¢o(x/pG_ y)f~.(y)dy ] ~ = (ikpG).[q~o(p~k)]2 = (ikpo).~o(k). (4.17) 
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Whence po-11 (¢o(X/PG - y)~,(y)dy = pa'q~,(x), (4.18) 

as advertised. 
It is easy to see that the above eigenvalues (and zero) exhaust the spectrum of 

LoL Indeed, one can explicitly compute the resolvents R;~(Lo ~) and verify that they 
are bounded by a constant times the inverse of the distance to the nearest 
eigenvalue. [] 

Corollary. For all a > O, the linear operators 6/fif Y~[ a = o(f¢% ;. ) ~ Lo ~ -  I are of  
index zero with dim ker(Lo ~ -  I) = 1. 

Proof. That f¢~2 is the only nontrivial function in the kernel of L o ~ - I  is a 
consequence of the above calculations. Similar logic indicates that 
f~2 ¢ Ran (Lo ~ - I), but all else can be reached. Hence, dim coker (Lo ~ -  I) = 1. [] 

Thus the linear operator does not possess an inverse. This is a reexpression of 
something we knew from the probabitistic methods of the previous section; in the 
neighborhood of the critical point, the asymptotic behavior of this system is 
governed by its intrinsic nonlinearities. 

Before we proceed, there are a few additional features of the linear operator Lo" 
and the bilinear operator Bo which merit discussion. 

1) While Proposition 4.2 is fresh in mind, the reader should verify [by a 
derivation identical to (4.15)-(4.18)] the formula 

Bo(f¢~.; f¢~,.) = PC +"f¢~. +,., (4.19) 

which will be indispensible later. 
2) Most of the eigenvalues of L o ~ - I  are less than zero, the three exceptions 

being f¢%, ff~l, and fC~z. Of course, f¢~2 with eigenvalue 0 is a perturbative 
manifestation of the fact that Gaussians of all width satisfy (4.10). The eigenvalue of 
I for f¢~o stems from the fact that the bilinear operator BA is "integral-preserving?' 
By this we mean that if f ,  g e L 1 then for any A, 

Ba(f, 9) = (~ f ) (~  9). (4.20) 

Thus, if one seeks a solution to (4.9) by starting with an initial function and 
iterating it indefinitely with Ba, some caution must be taken to ensure that the 
initial function integrates to one. This "trivial" unstable mode is a consequence of 
the fact that B~ is bilinear, and is easily remedied by a slight modification of the 

operator ~-~ [-see Eq. (5.15)]. Finally, there is (~1 with eigenvalue V 2 - I .  o f  
course, we are "not interested" in this function since we have already restricted 
ourselves to the even subspace of L~(I(). Nonetheless, the presence of this odd 
function with positive eigenvalue is a reflection of the inherent instability of this 
system to ferromagnetic boundary conditions. The eigenvalue of ~ should be 
compared with the stability calculation of Proposition 3.1. 

IVc. Existence of  Nontrivial Solutions 

According to the results of the previous subsection, we cannot make direct use of 
the implicit function theorem. However, in instances such as these, it does provide 
us with a "poor man's center manifold theorem :" 
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,Theorem 4.3. Let X,  Y denote Banach spaces and 3- a : Y~£--*Y be a C z map defined 
in some neighborhood of (A =0,  f= fo ) ,  satisfying ~'-a(fo)=0. Furthermore, 
suppose with 3~--o/6f-f/bf:-o(fo; .) is a linear Fredholm operator with 
dimker(rJ'o/rf)<oo and dimcoker(g)~--o/ff)<oe. I f  tpeker(6:-o/rf) and 
A is small enough, then for e sufficiently small, there is a function 
g,,a0P) ~ X \ k e r ( 3 f  o/rf) such that 

9-'a(fo + e~p + g~, a) ~ coker (bJ-o/3f) • 

Moreover, for fixed ~p, g~,a is unique. 

Proof. This is a standard result in bifurcation theory which has its roots in the 
original work of Liapunov and Schmitt. For  a discussion of these and related 
matters see, for example, [35]. 

Remark. Since, in our case, dim ker(bg-o/ff) = dim coker(b3-o/6f) = 1, the above 
theorem reduces our analysis to the case of "one equation, one unknown ;" thus 
there is some reason for hope. 

Let us pause to contrast our situation [here in LI(R)]  with the typical 
applications of the above theorem. It is often the case that, in the formalism of the 
statement of Theorem 4.3, the vector fo continues to satisfy the equation g~(f0) = 0 
in a neighborhood of A = 0; however, such a solution is deemed "undesirable" - 
generally for reasons of stability. One is therefore seeking a new family of solutions 
bifurcating from fo which depend continuously on the parameter A. It should be 
observed that back on [ -  1, + 1], where we are interested in probability measures, 
this is a reasonably fair description of our predicament. It is not, however, a 
complete description. Indeed, as evidenced by our gyrations on LI(]R), the nature 
of the new solutions (should they exist) will be drastically different from the 
unstable solution, a point mass at 0. 

On L~(R), we differ from this "standard picture" in several ways. Most 
importantly, there are no "known solutions" - except at A = 0, and at A = 0, one 
might argue that there are too many! In fact, this surplus and deficiency 
compensate for each other quite nicely, as will shortly become clear. 

Let us continue our discussion of the "standard picture" for the special case 
dim ker(b~o/rf)= dim coker( fgo/r f )= 1. Then, if # is any nonzero linear func- 
tional which vanishes off of coker(bgo/3f), we may define 

h(e, A) = #(~-o(fo + e~p + g~,a)). (4.21) 

Now, in the usual case, we have 

h(O,a)-o  (4.22) 

in a neighborhood of A = 0. It is also not unusual to find that 

IIg~,a II = o(e). (4.23) 

Under these circumstances, the origin is a critical point (Vhtoo = 0) and the Hessian 
matrix is nonpositive. If, in addition, one can guarantee that the cross derivative 
satisfies h,a # 0, then the origin is a saddle point, which implies the existence of a 
nontrivial level curve in the eA plane starting from the origin (see Fig. 9). 
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Now we have no knowledge of the behavior of our system for e = 0, A + 0 - 
indeed, our problem does not even make sense for A < 0. On the other hand, things 
are in remarkably good shape along the e-axis. This will be demonstrated by an 
explicit construction of the (implicitly defined) function g,,a of Theorem 4.3 
at A=0. 

Lemma 4.4. Let g~,~ denote the functions described in Theorem 4.3; that is 

Then, at A = O, 

i) 

ii) 

QT" ~ ~ Cr - -  ~/A(f¢ o+8f¢ 2+g ~,a)-h'(e,A)f¢~2. (4.24) 

IIg~,oll = 0 (82) ,  

h(e, 0)=0 for all 181<1/4. 

Proof. An explicit calculation shows that 

g~,o = ~ (1/n!)8"fC~z, (4.25) 
n = 2  

(which converges uniformly for 181 < 1/4) satisfies 

- + ~ (4.26) ~ 0 ( ~ a 0 " ~ 8 ' ~ a 2 - ~ 9  e , 0 ) - - ~ ° ' 0 - ~ ' 8 ~ a 2  g e, 0 "  

This, together with the uniqueness clause of Theorem 4.3, implies i) and ii). [] 

Remark. Two consequences of the above lemma are worthy of note: 
1) While Theorem 4.3 only guarantees that O~,A ~ X\ker(6J-o/6f), so that in 

general g~,,a may contain a piece proportional to ~ o ,  the expansion (4.25) 
contains no such component. This is a reflection of the integral preserving property 
of Ba, and holds even for nonzero A. 

2) Although Theorem 4.3 only provides us with an f satisfying 
J-a(f) ~ ker(b•o/6f), at A--0 we find the stronger result that ~-0(f)=0. This 
should not represent a startling revelation; indeed, the f so constructed is none 
other than the expansion of a different Gaussian f¢"'o with a'= al l  + 4~] 1/2. 

Thus in LI(R) we find ourselves a 90 ° rotation away from the usual situation: 
Along the e-axis is our analogue of a family of known solutions. However, these 
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solutions do not correspond to a family of physical, unstable solutions; in some 
sense, they all represent the single critical solution. 

With an eye for completing the proof of Theorem 4.1, let us summarize. The 
function g"~.a is identically zero when A = 0  and e small enough. It is generically 
nonzero in a neighborhood of the origin; thus one can pretty much bank on the 
fact that the Hessian 

]h~u] = h~h~aa - h~ah~a~ (4.27) 

will be negative when evaluated at zero. The nontrivial issue then is whether the 
origin is a critical point. It is at this stage that the condition of"the correct width" 
becomes manifest. 

Lemma 4.5. Let h'(e, A) be the function defined in Eq. (4.24). Then the origin is a 
critical point for h ~ iff a = a* = 2/[pa(2po- i)]. Furthermore, for this value of the 
width, the origin is a saddle point. 

Proof. By Lemma 4.4, for any width a, h~,(0, 0)----d/de[h'(e, 0)] I,= 0 = 0. Thus to 
verify that the origin is a critical point, we must show that 

h"a(0, 0) = d/dA [h'(0, A)] la = o = 0. (4.28) 

By the definition (4.24) of h% (4.28) is equivalent to the statement that 
d/dA [~--a(ff%)] In = o has no component along ff~2. 

Let us then compute d/dA [Ja(f#%)] la=o. Our calculation is simplified by the 
fact that we have chosen ~a to be the identity in a neighborhood of the origin. This 
allows us to deal with the stretched operator ~ X e ~ - I : L I [ - - 1 / ~  -, + I /V~-  ] 
~LI[-I /] / /A,+I/I / / -A],  ignoring contributions from the endpoints. The 
stretched operator may be written in the same form as Eq. (4.1'): 

+ iy~ 

gt~d(h)-- I(h) [x] = - h(x) + j _  h(y)h(Ql(x, y; A))Qg(x, y; A)dy, (4.29) 
z+~a 

where 

Qt(x, y; A) = ( x -  py)/(p-  Am2xy), 

Qz(x, y; A) = p(1 - Am2y2)/(p-d m2xy) 2 
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and 

A =p--p~; p~ = V 2 ,  

p=p(A)=po+ A, 

m2=m2(A)=2p(A)-I  =mo2+2A; mo2=2po-1  = V ~ - I .  

A straightforward calculation now gives 

d/dA [~--a (fg~o)] [a = o = d/dA [(g/t~ - / )  (fg%)] {a = o - Jr1 "~ o¢2 (4.30) 

with 

J l  = S fg%(x/pc- y)~%(y) {Pc- ~(2mc2xY- 1 -pomo2yZ)}dy/pc, (4.31a) 

Y2 = -- l [ f~%(x/Po - Y)]'N%(Y) {Pc- 2 [-PoY + (x - PoY) (1 - m~2xy) ] }dy/pc 

= f 

x { 2 p c - 2 a - Z ( x / p c - y ) [ p j + ( x - p j ) ( 1  --mGZxy)]}dy/p~. (4.31b) 

Reexpressing the terms in l~rackets as functions of y/o and (x/po-y)/a,  these 
integrals become 

J l  = ~ fq'~o(X/pc- y)~%(y) 
x { - p o - l  +m~Zoz[2((x/pc-y)/o)(y/a)+(y/cO2]}dy/pc, (4.32a) 

J z  = ~ ~#%(x/p~- y)fg%(y)2{pG- X [((x/pc - y)/a) (y/a) + ((x/pc - y)/o) z] 

- mc2oz[((x/pc- y)/o)3(y/o) + ((x /po-  Y)/O)2(Y/O)2]}dy/pc. (4.32b) 

Next we use the identities for Hermite polynomials (see e.g. [36]): 

4 = (I/2)H~(4), (4.33) 

42 = (1/2)Ho(4) + (1/4)Hz(4), (4.34) 

43 = (3/4)H,({) + (1/8)n3(~), (4.35) 

and the definition 

ff~,(~) = fg%(4)H,(~/o-) (4.36) 

to rewrite J l  and J 2  as convolutions of the eigenfunctions. These are, however, 
not just any convolutions. Indeed, they may be expressed in terms of our bilinear 
operator Bo: 

~,~1 + o ¢ Y 2  = - -  Po- 1Bo[ff%; fg'o] + 2(m~ 262 + Po- a)Bo[(l/2)fg'l ; (1/2)~1]  

+ mo2aZBoEf#'o; (1/2)f#% + (1/4)ff'2] 

+ 2Po- *Bo[(1/2)f#% + (l/4)fg'2; fg'o] 

- 2mo2aZBo[(3/4)fg'~l + (1/8)f#'3; (1/2)f#'1] 

- 2mG2aZBo[(l/2) f#% + (1/4)f#~ z; (1/2)ff% + (1/4)fg'2]. (4.37) 
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Evaluating the terms above via the convolution identity (4.19), it is found that 

d/dA [Ya(ff%)] 14 = 0 = [ -  (l/2)ma 2tr2 + Pa-  1 ] P o Z ( ¢ a 2  - -  (1/4)ma2ff2p~4ff'r4- 
(4.38) 

Observe that for any tr, the above expression has no component along f¢"o, 
consistent with the same property already noted for f~,A" However, the 
component along (~2 vanishes only for the special width o-* given by 

(o-*) 2 = 2/pGm~ 2 . (4.39) 

The reader should note that (4.39) compares favorably with the asymptotics of the 
stable band calculated in Sect. III. 

Next we must verify that the origin is a saddle point for h"*. This amounts to 
checking that the Hessian of Eq. (4.27) is negative at ~r = •* when (e, A)=(0, 0). 
Again, by Lemma 4.4, for any width a, h~,,(0, 0)= d2/deZ[h(e, 0 ) ]  ]e=o = 0. Thus it 
suffices to show that 

h"~(O, O) = h~,(O, O) - d2/dedA [ha(e, A)] ts = a = o =~ 0 (4.40) 

at a=cr*. But by Eq. (4.24), h"~(0,0) is the component of 
d/dA [ (6/8f)~((¢%; f#'2)] 14 = 0 along ff'2. In other words, (4.40) is equivalent to the 
statement that the mixed derivative operator, when evaluated at the known 
solution if% at A =0,  operating on an element if"2 of the kernel of the linear 
operator, must have some component along the cokernelff"z. 

In order to compute the mixed derivative on f#'z, we first take the functional 
derivative evaluated at (9%: 

(¢~/~)~A(ffa0 ; ,~a2) = --/((~a2) + 2Ba((#"o; ~a2).  (4.41) 

The calculation of the derivative with respect to A is again simplified by our choice 
of #~, which allows us to deal with the stretched form of the bilinear operator (i.e., 
the bilinear analogue of ~a) .  The result is 

d/dA [(6/6f)9-~((¢%; ff*2)] [4 = 0 = 2[J1((¢*0; (#'2) + Y2(ff~rO ; '~a2)], (4.42) 

where j l ( f#"o;  f#*2) and j2 ( f f%;  f#'2) are the bilinear analogues of the integrals 
J l  and J 2  of Eq. (4.31) in which the factors of ff%(y) are replaced by ~*2(Y) [e.g., 
J l  = J1(~¢'0; ~%)]. 

Next, we use the Hermite polynomial identity (4.34) to reexpress ff~2(Y) in the 
form 

(9~2(y) = 2(2y2/a z - 1)f9%(y). (4.43) 

We then have 

d/dA[(6/f f)J-a(f f%; (#~2)] 1~ = o =412()~ + Jz ) - ( J~ -~ -  ~2)],  (4.44) 

where o¢ 1 and J 2  are analogues of J l  and o¢ 2 [see Eq. (4.31)], in which the 
integrands contain additional factors of (y/a) z. In order to evaluate these integrals, 
we again use identities (4.33)-(4.35), and the additional formula 

~4 = (3/4)Ho(¢) + (3/4)H2(¢) + (1/16)H4(~) (4.45) 
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to obtain 

) 1  +A2 = -pc- -1Bol_r~o; (1/2)~% + (1/4)~%] 

+ 2(ma 2a2 + Pc- 1)BoE(t/2)(¢"~; (3/4)(¢" 1 + (t/8)(¢%] 

+ me2a2Bo[~'~o; (3)4)~" o + (3/4)f#'2 + (1/16)f¢%] 

+ 2p~- 1B o [(1/2)~% + (1/4)~" 2; (1/2)(¢% + (1/4)f~'2] 

--2mo2a2Bo[(3/4)fg~l + (1/8)~3; (3/4)ff'1 + (1/8)f#%] 

--2mG2a2Bo[(1/2)~% + (1/4)f#~2; (3/4)~% + (3/4)f¢% + (1/16)~%] 

= [ p -  1 _(3/4)m2tr2]pG2(~,, 2 + [(l/4)pG- 1 _ (5/8)m2a2]p4f#% 

- (1/16)ma2a2p~6~'~ 6 . (4.46) 

Since the (¢'2 component of o¢1 + J2  vanishes for the special width a = a*, it 
suffices [by Eq. (4.44)] to verify that the (¢~2 component of J l  + J 2  is nonzero for 
a = a*. This, however, is obvious: 

p~-I  _ (3/4)m2(a,)2 = Pc-a [1 -(3/4)(2)] = - (1/2)p~-1 =~ 0. (4.47) 

Thus, we have established that the origin is a saddle point for h ~*, which completes 
the proof of Lemma 4.5. 

For future reference, let us just note that, for general width a, the value of the 
cross derivative is 

d/dA [(6/6f)@a((g%; af*z)] I,, = o 
= 4{[p o-  1 _ ma2a2]po2(~,7 2 + [(1/2)p~- 1 _ m262]p64~a 4 __ (1 /8)ma2a2pa6f f ,~6}  

--~ - - / £ 2 f f a 2  - - / £ 4 f f t r 4 -  K76ffa6 . (4.48) 

As was already apparent from Eqs. (4.38) and (4.46), this has no component along 
~'o, which is again a perturbative manifestation of the integral-preserving 
property (4.20). [] 

The previous 1emma shows that only the Gaussian of the "correct" width, 
(a*) 2= 2/p~m~ 2, has a chance of bifurcating into a family of new solutions at 
nonzero A. That the origin is a saddle point of h "* shows that this family does 
indeed bifurcate. Thus we have 

Corollary. Provided that A is sufficiently small, there is a unique one-parameter 
family of  symmetric L 1 functions, f~, which satisfy the equation 

f~ = ~a(fA) a.e. 

IVd. Positivity of  the Solutions 

The previous subsection establishes the existence of nontrivial solutions to 
f~ --~a(f~).This is practically the result we want, except that, as of yet, we have no 
guarantee that the f j  satisfying the above are positive. Although positivity should 
be obvious on moral grounds, if tooked at in the wrong light, such questions can 
seem unreasonably difficult to analyze. The resolution, however, turns out to be 
straightforward. 
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Proposition 4.6. The fixed point equation 

f t  -- ~(If~l)  

also admits a unique one-parameter family of symmetric L ~ solutions when A is small 
enough. 

Proof. This is established by checking that all the linear operators associated with 
the new problem are identical to the objects computed previously. Now this may 
seem unlikely, since taking absolute values can easily lead to singularities in 
derivatives. However, the result is a consequence of the fact that the derivative of 
the absolute value of a function which is known to be positive equals the derivative 
of the function itself. From this point of view, it is essential to our analysis that the 
"point" in L ~ where all these derivatives are taken is f¢%, a function which is 
uniformly positive on any bounded subset of R.  

Rather than attempting to demonstrate the above principle in full generality, 
we will be content with a single example: Let us consider the Frrchet derivative 
(6/6f)Bo(lfq%[; [fq%[). Pick t/e C~o with lit/Ill = 1. The derivative is evaluated via 
the limit 

lim,_,o(1/e) [Bo(If9% + et/I; If#% + et/I)- Bo(l~¢%l; 1~%1)3 • (4.49) 

Here, the argument is trivial. For e sufficiently small, the function N%(x) + et/(x) is 
positive Vx e R.  Thus we may omit the absolute value bars in the above expression. 
This is all we need since C°° o is dense in LL However, since the result seems rather 
surprising, let us make the proof somewhat more explicit: 

Let f e  L t, with j[ f I[ i = 1, and for general ~p(x), denote by tp- the negative part 
of V', i.e. ~0-(x)= Iv,(x)l if tp(x)<0 and zero otherwise. Now 

so that Ifq'° + efl--  f¢~o + ef + 2[~¢'o + e f l - ,  (4.50) 

B,~(IN"o + CI; i~"o + C[) = B~,(~'o; ~"o) + 2~:B,~(C5°o ; f )  

+ 4B,~(c5"o; [N°o + ef]  - )  

+B~(~f+2[~%+~f]-; ef + 2[c5"o + e f ] - ) .  (4.51) 

Observing that 

lef + 2[f9% + ef ]  -I< l~fi + 21 [f¢% + e f ]  -I --< 31sfl, (4.52) 

the last term in Eq. (4.51) is seen to have an L 1 norm which is 0(~2). The first two 
terms evolve into the Frrchet derivative. 

It remains to show that 

0 = lim~_~o(1/~ ) IIBA(~%; [(~o +ef] -)11 ~ • (4.53) 

By the property (4.20), the above is just 

l im~ o (1/~) f [~% + e f ] -  dx. (4.54) 

Next, write f - (x) =fN - (x) + r~,(x) with f , t -  (x) = f  - (x) if Ixl =< N and f - (x) < N, 
and zero otherwise. It is easily seen that 

[N'o + ef]  - = [f#'o - eft] - + [f#~o - erN] -,  (4.55) 
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and that [~¢~o - efN] - - 0 (4.56) 

for e small enough. Thus VN 

lim~-+0 (l/e)IlB~(f~%; [ ~ o  +ef]  -)111 < S rNdX, (4.57) 

which can be made as small as desired by taking N large enough. 
The calculations of the other linear operators - including "cross derivatives" - 

are analogous. [] 

Proof of Theorem 4.1. For small values of A, we have established the existence of 
solutions to two separate equations: fd <") satisfies 

fA<") = ~-(fz<")), (4.58) 
while fz<P) satisfies 

L <v) = ~( I f~>l ) .  (4.59) 

It remains to show that f~<") = f~<P)- f~ and that II f~ fi 1 = 1. To this end, observe that 
=fa ~p) is automatically positive, since the output of Y~ on a positive function is 
positive. This implies that 

fa (p) = [[ fa (p) II ~ . (4.60) 

However, by the integral-preserving property (4.20) [and by Eq. (4.59)], this 
implies [[ f<v)[[ 1 = 1. We have also inadvertently shown that fz  <p) satisfies Eq. (4.58); 
thus by uniqueness of solutions, fz<P)=fz<"). [] 

V. Properties of the Solution 

Having established the existence of a spin glass solution to Eq. (2.27)- in its various 
guises - it is worthwhile to investigate some of its basic properties. The analysis in 
this section is by no means exhaustive; indeed, full justice to this problem would be 
the contents of a separate paper. 

We will therefore be content with studying three aspects of the solution: 
1) It follows from the results of the previous section that the scaled solution is a 

Gaussian of width a * =  [2/p~(2pG-1)] 1/2 at the critical point A =0. As we move 
away from the critical point, one might imagine two types of corrections. First, 
there may be a correction to the width of the solution; basically, this would mean 
that the solution looks like a Gaussian of a different width a(A)= a*[l  + 6a(A)]. 
Second, there may be deviations from Gaussian behavior so that the solution goes 
like (fl'~(A)o[l+6f(A)], with 6f(A) an explicitly non-Gaussian function. In 
Subsect. Va, we will compute these corrections and show that they are of the same 
order. 

2) In Subsect. Vb, we examine stability of the solution by calculating the 
eigenvalues of (the linear approximation to) the functional derivative 
6/6fY-n(f~;. ). It is found that (except for the trivial "integral-preserving mode") all 
eigenvalues are negative to first order in A, consistent with stability. From the 
considerations of Sect. IV, it should be clear that the only potentially dangerous 
eigenvalue is that of the "width mode," for which we also calculate the lowest order 
correction to the eigenfunction. 

3) In Subsect. Vc, we examine the asymptotic behavior of the solution near the 
tails of the distribution, i.e. when the single-site magnetizations are near those of the 
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deterministic ferromagnetic system. Here we find a truly nonperturbative effect: 
The probability that the single-site magnetizations of the spin glass are within ~ of 
m(~)(p) vanishes faster than exp[-~-A~p)], where A(p) depends explicitly on the 
temperature parameter p=tanh(1/kBT). We also find that the probability is 
bounded above by an expression of the same form with a closely related function 
B(p). In light of this (temperature-dependent) "singular" behavior, it is reassuring 
to know that a solution exists. 

Va. The Leading Non-Gaussian Correction 

As should be clear from the lesson of Lemma 4.4 [cf. Eq. (4.25)], expanding the 
solution f~ in the form 

fa = E cJO*, (5.1) 

and starting at the c, does not immediately allow one to draw conclusions about 
the departure of fd from a Gaussian. Indeed, one first must decide from which 
Gaussian fz is supposed to be departing. Our criterion (which is by no means the 
only one) is to find a width a(A) such that the expansion offA in Hermite functions 
of width a(A) has vanishing component along fq~(a) 2. 

It turns out that many of the properties of the f~(x) satisfying (4.9) can be 
studied using the fact that fA is related to the probability density of the random 
variables satisfying (3.4). Our strategy will be to take Eq. (3.4) and rescale it by the 
unknown with a. Thus we have 

X ~ -  X /a  , (5.2a) 

V~-- Y / r ,  (5.2b) 

z o  =- Z /~r , (5.2c) 
related by 

X,, 7 p[Y'~ + Z J/J1 + m2a 2 Y,~Z]. (5.3) 

It is clear that if we choose a(A) by requiring that 

E[H2(X,)] =0,  (5.4) 

then fa(q~,2(x)) will have no component along ff~2. A similar result then holds for 
fa(x) to all orders in perturbation theory (i.e., the result is perturbatively 
independent of the decompactification). This is enough to satisfy us for the time 
being since we can only treat (5.3) order by order in A. 

It turns out that the convenient quantity to calculate is mZa 2, and that the 
computationally useful perturbation parameter is 

3 - (2p z - 1)/p 2 = (4/p~)A - 12A 2 + O(A 3) (5.5) 

rather than A. In terms of this, the result is 

Proposition 5.1. The width satisfying (5.4) is given by 

m20 "2 = (1/2)611 + (9/8)6] + 0(62). 

Remark. By (5.5), the leading order term in mza 2 is (1/2)6 =(2/pG)A + O(A2), which 
the reader should recognize a s  m2ff*z+O(A2). 
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Proof. Using the identity (4.34) and the distributional equation (5.3), we have 

H2(Xa) 7 4p2[ Y~ + Z . ]  2/[1 + m20 -2 Y~Z.] 2 _ _  2 

p2 {4 Ya 2 + 4Z~r 2 - 16m2tr 2 Y~2Zcr2 ~- 1 2 m 4 a  4 Ya2Z~2( Y~r 2 + Z~r2)} 

- 2 + Oodd( r,, Z,) + R~(Y~, Z , ) ,  (5 .6 )  

where Ooaa(Y,, Z,) has vanishing expectation due to symmetry, and R~ is the 
remainder. Using the advance knowledge (demonstrated in Sect. IV) that 
0-2= O(A), it can be shown that 

EI]R~I] - -  0(m20-2)  3 . (5.7) 

Organizing the right-hand side of (5.6) into Hermite functions, a little effort shows 
that 

H2(X~) 7 p2(H2(Y~) + H2(Z~) + 4 - m2a2[n2(Y,) + 2] [H2(Z~) + 2] 

+ 3m4a'[(t/16)//4(Y~) + (3/4)H2(Y~) + (3/4)] [H2(Z~) + 2] 

+ 3m4a4[(1/16)n4(Y~) + (3/4)H2(Y~) + (3/4)] [H2(Z,)  + 2]} 

- 2 + Oodd(Y,, Z,) + R~(Y¢, Z¢). (5.8) 

Choosing a such that E[H2(X~)] = 0, we find 

0 = 4p 2 - 2 -  4p2m2o -2 - 9p2m4a4 + o(A) 2 . (5.9) 

It should be remarked that in the above, we have again used knowledge from 
Sect. IV, this time of the fact that 

E[H4(X,)] = o(1) (5.10) 

(although we will shortly replace this with an even stronger statement). Solving 
(5.9) to second order in 6 reproduces the statement of the proposition. [3 

To obtain the first non-Gaussian correction, we look at higher powers of (5.3) 
and perform similar heroics. 

Proposition 5.2. I f  a is chosen accordin9 to Proposition 5.1, then 

- E[H4(X~) ] = - 246 + 0(62). 

Proof. We use the well-known identity 

H4(~ ) = 164 ¢ - 12 - 12H2(~) (5.11) 

on the random variable X~. Thus, we need an expression for 16X~ 4 in terms of Y~ 
and Z~ which is reliable to order 0 -2. The result is 

16X,r 4 ~ p4{H4(Y,~) + 12Hz(Y~) -1-- H4(Z,~) + 12H2(Za) + 24 

+ 6(H2(Y,~ ) + 2) (H2(Z.) + 2) 

-4mZa2[(H4(Y~) + 12H2(Y.) + 12)(H2(Z,,) + 2) 

--~ (H4(Zer) -~- ] 2Hz(Z~) + 12) (Hz(Y~) + 2)3 } 

+ Ooaa(Y., Z.)+ R',,(Y,. Z~). (5.12) 
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Subtracting 12H2(X~)+ 12 from the right-hand side of (5.12), we get a (reliable) 
expression for H4(Xa). Averaging both sides, we obtain 

~[1 --2p z] = 16p4(3 - 12m2a 2) - 12 + 0[(0-2)23, (5.13) 

which, after a little thought, is seen to imply 

~ = - 2 4 3 + o ( 3 2 ) .  [] (5.14) 

Combining the two results of this section and using (5.5), we have 

Proposition 5.3. The perturbative approximation to the solution to Eq. (4.9) is given, 
to leading order, by 

f ~ = ~ o  + ~( A ) ~ 4  + o( A) 

with 

m2~r2(A)=(2/p~)A+12AZ+o(A2), ~(d) = 0V(244!) = -(1/4p~)A+o(A). 

Vb. Linear Stability and Perturbations in the Width Mode 

The moment  analysis of Sect. III, together with the existence of a solution to (4.9), 
suggest that the solution is of the attractive type. We do not, as of yet, have any 
strong results in this direction. We can, however, show that the linear operator 
approximating the functional derivative 6/6fJ-~(j'~;. ) has only negative eigen- 
values; this is, of course, a necessary condition for establishing more complete 
statements concerning the stability of solutions to (4.9). 

Remark. One should mention that any time there is a solution to fA = ~ ( f J ) ,  the 
operator 6/6fJ-A(fA ; ' ) always has fA as an eigenfunction of eigenvalue unity. This 
corresponds to the "trivial" growth mode, and can easily be killed by redefining the 
functional. For  example, using 

~-](f)  - I1 f JI 3/2o~j(f) (5.15) 

does not affect our analysis in the slightest, and , ~  is kind enough to lower the 
eigenvalue of f~ by 3/2. 

Since the major danger is the second eigenvalue (i.e., the eigenvalue of the 
"width mode") which vanishes at the critical point, we will examine this mode in 
some detail. 

Proposition 5.4. For A sufficiently small, all eigenvalues (except the maximum) of 
the linear approximation to c~/6f Y-ZJ'~ ;. ) are negative. Explicitly, these eigenvalues 
are given by 

2 n-- - 1 + 2p"[1 - n(n-  l )p~- 1A]. 

Furthermore, to lowest order in A, the second eigenfunction is given by 

f(2) a = N"(a) 2 + fl(A)N'~t4),, + )'(A)~a(d) 6 + O(A), 

where o(A) is given in Proposition 5.3, and 

fl(A) = - 3p~- 1A, 7(A) = - (1/4)p~- 1A. 
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Proof .  First, let us determine the linear approximation to 6 / 6 j ' : ' ~ ( f ~ ; .  ). To do 
this, we recall that 6/6f~,~ a is just twice the bilinear operator Bn of Eq. (4.12), and 
expand the latter in the form 

B a ( . ; . ) = B o ( . ; . ) + A B I ( . ; . ) + R ~ ( - ; . ) .  (5.16) 

Here ][ Rn(. ; • )11 = o(A),  and A B I ( -  ; .  ) is just half of the "cross-derivative operator" 
considered in Lemma 4.5. Now, using the results of Proposition 5.3, we may write 
the solution ft°) a in the form 

f~°) d = fq'tz) o + 0~(A)~a(A) 4 + r(°) a (5.17) 

where a(A)  and a(A) are given in the statement of Proposition 5.3, and 
Llrt°)~ I[ = o(A).  The linear approximation is therefore 

6 / 6 f  J-~( f (°)a ; .  ) = - I ( .  ) + 2Bo(fq'ta) o ;- ) + 2aBo(fq~t~)4; • ) 

+ 2A B 1 (fq'~a) o ;- ) + R~(-) (5.18) 
with lIRa(" )l[ = o(A).  

As indicated above, our principal concern is the eigenfunction f(2) a with the 
property f~2) d-of92 ~* as A $ 0. Let us construct f t2)  a perturbatively. Thus, we write 

f(2)zl = ~a(A) 2 -}- fl(A)~a(Ll) 4 + 7(d)~r(A) 6 + r(2)A, (5.19) 

where, presumably, [[r~Z)~l[=o(A), while fl and ? are O(A). To determine the 
coefficients fl and 7, and the eigenvalue, we must solve 

6/6fja(fto) ;f~2) ) =22f(2)zi (5.20) 

to leading order in A. Our calculation is tremendously simplified by the fact that we 
have already computed 2B~(ff%; ~'2) in the proof of Lemma 4.5. Explicitly, from 
Eq. (4.48), we have 

2Ba(f#%; f¢'2) = --  [/¢2ffa2 +/¢4 (ffa -{- K6~a6] (5.21) 

where, for a = a*, t q  = ( 4 /po)po 2 , (5.22a) 

~:4 = (6/po)PG 4 , (5.22b) 

~c 6 = ( l /p  G)p o 6 . (5.22c) 

Plugging (5.18) and (5.19) and solving to lowest order, we find 

22 = - A ~2 = - 2pG- 1A, (5.23) 

fi = - 2At% = - 3pG- 1A, (5.24) 

= - (4/3) [A~c 6 - 2apo 6] = - (1/4)po- 1A. (5.25) 

Thus the eigenvatue 22 is negative, consistent with stability. 
It remains to check the other eigenvalues. Since we are not interested in the 

perturbed eigenfunctions, we need only check the diagonal part of the operator in 
(5.18). The only nontrivial calculation is to compute the coefficient of ft ,  in 
2BI(fq%; ~9",). Omitting the details, the result is 

#,  = - 2 p ~ " [ n ( n -  1) /po]A , (5.26) 
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which gives the shift in the eigenvalues of (the linear approximation to) the linear 
operator. Combining this with the zero order terms from (5.18), we obtain 

2 , :  -- 1 + 2p"[1 -- n(n-- 1)p~- 1A]. (5.27) 

Thus, all eigenvalues in the symmetric subspace (save the trivial maximum one) are 
negative, as asserted. [] 

Vc. Asymptotics at the Tails 

In the preceding subsection, as well as in most of the previous analysis, we have 
been concerned with the stochastic behavior of the system when our random 
variables are near the center of the distribution. By rescaling - in one form or 
another - this has allowed perturbative control of certain aspects of the problem. 

There is a fundamentally nonperturbative feature in this system which no 
amount of rescaling can get around: The random variables described by Eq. (3.4) 
live on [ - 1 ,  + 13. Thus perturbation theory has to break down at some order 
(depending on A), because the probability of observing magnetizations with 
absolute value approaching m~)(p) must vanish. 

In this subsection, we will use some elementary probabilistic methods to 
estimate the behavior of the empirical distribution of random variables satisfying 
Eq. (3.4). Our principal result is: 

Theorem 5.5. Let X denote the random variable satisfying Eq. (3.4) and distributed 
according to a density. Define G ( 0  = Prob(X > 1 - (). Then for ( sufficiently small, 

a) G(O ~ exp [ - 1/("], 

b) G(0  _-> exp [ - 1/( b] 

whenever 

a > A(p) - (log2)/[log [(1 - p)/(2p)][, b < B(p) - (log2)/[log [(1 - p)/p][. 

Remark. These estimates indicate that the functions QA(x) are "highly nonanalytic" 
at [xl = 1. Of course, this sentence is meaningless since we have no guarantee of 
analyticity properties for smaller values of x. Nonetheless, the above theorem is 
indicative of the global nature of the solutions to' Eq. (3.4). 

Proof. The first observation [necessary for both the bounds a) and b)] is that for 
all Y, Z in ( -  1, + 1), F(Y, Z) is increasing in both arguments. This is easily checked 
by computing 

OF/OZ = p(l - m 2 Y2)/(1 + m E YZ) 2 , (5.28) 

with a similar result for ~F/8 Y. 
Now let 0 < ( < 1, and express X, distributionally, in terms of the independent 

random variables Y and Z according to Eq. (3.4a). Due to the increasing property, 
it is seen that even if Z = 1, X cannot exceed 1 - ( unless Y exceeds a certain value, 
which we denote by 1 -  u(0. Thus u(0 is defined by 

F(1 - u((), 1) = 1 - ( .  (5.29) 
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Solving for u(O, we find 

u(~) = 2p~/(1 - p  + ~m2). (5.30) 

Again making use of the increasing property, it is clear that both Y and Z must 
exceed 1 -  u(~) in order that X exceed 1 -  ~. This implies the inequality 

G(() ~ GZ(u(()). (5.31) 

It turns out that the remainder of the derivation is much cleaner if we reverse the 
emphasis of (5.31), i.e. we write 

G(((u)) < GZ(u) (5.32) 
with 

~(u) = (1 - p)u/(Zp- mZu). (5.33) 

Pick any value u 0 < l ,  and define the sequence Ux=~(Uo), uz=~(Ux), etc. 
Equation (5.32) tells us that 

G(u,) < G(u0) z" . (5.34) 

We now claim that u , ~  [(1-p)/(2p)]", in the sense that 

lim u, 1/" = (1 - p)/(2p). (5.35) 
11..4 ~3 

To see this, observe that ~(u)>u(1-p)/(2p), which implies that Vn, 
u, > Uo[(1 - p)/(2p)]", giving a bound one way. On the other hand, the Un are strictly 
decreasing, which means that Yk 

Un +k ~ Uk[( 1 -- p)/( 2p-- mZuk) ]" , (5.36) 

from which an opposite bound is obtained. 
We are thus permitted to write 2n~Un -A(p) with 

A(p) = (logZ)/[log [(1 - p)/(2p)][. (5.37) 

Then by choosing any a < A, the bound is established at the points ~ = u, for n large 
enough. But by the monotonicity of G(~), this implies that G(~)~ exp [ -  1/~ a] in 
the intervals u,+ a < ~<u, .  Since we have been generous with our estimate of the 
power (i.e., we refrained from choosing a = A), we can now find an no, so that the 
result holds whenever ~ < u,o. 

The second result follows in an analogous fashion. Letting ( E (0, 1) we will find 
a v(() such that if both Y and Z exceed 1 - v(~), X is forced to exceed 1 - (. It  is easy 
to verify that 

~(v)= v['2(l -- p) + m2v]/[2p--mZ(2u-- uZ)] . (5.38) 

Repeating the argument which established the upper bound - remembering to be 
generous enough to choose b > B -  the second result is seen to hold for ~ sufficiently 
small. [] 

Remark. It is easily seen that improved upper bounds can be obtained by the 
incorporation of more sophisticated input conditions. The lower bounds cannot 
be improved, in the sense that under the assumption that G(~)~ exp [-1/~c],  it is 
easily shown that c = B(p). 
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