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Abstract. - We present results of a rigorous analysis of the k J king spin glass on the Bethe 
lattice with uncorrelated boundary conditions. We derive phase diagrams as functions of 
temperature 'us. percentage of ferromagnetic bonds, and, when half of the bonds are 
ferromagnetic, temperature 'us. external field. Critical exponents are also determined. Using 
bifurcation theory, we establish the existence of nontrivial distributions of single-site 
magnetizations within the low-temperaturehmall-field phase boundaries; these solutions reflect 
spin glass, ferromagnetic and magnetized spin glass behavior. 

We have studied the 4 J Ising spin glass model on the Bethe lattice with varying 
fractions of ferromagnetic bonds [l-31. Here we present concise arguments for results which 
have been proven rigorously elsewhere [2, 31. Recursion relations for the distribution of 
single-site magnetizations are derived and studied as a dynamical system on an appropriate 
function space. Bulk properties are described by attractors of the recursion relations, and 
the phase transitions correspond to bifurcations in the dynamics. Using these methods, we 
derive the phase diagram as a function of temperature and fraction of ferromagnetic bonds, 
determine critical exponents at  the phase boundaries, and prove the existence of a stable 
spin glass solution near the high-temperature paramagnetic phase boundary. At least in 
terms of single-site properties, the existence proof precludes chaos, an infinite hierarchy of 
transitions, and other bizarre possibilities. We also prove that (when half of the bonds are 
ferromagnetic) the spin glass transition persists in the presence of small external magnetic 
fields, and derive the asymptotics of the de Almeida-Thouless (AT) line[41. 

The Bethe lattice provides a useful alternative to the more commonly studied infinite- 
range Sherrington-Kirkpatrick (SK) model of spin glasses [5]; here the interactions are 
short-range, the analysis is straightforward and the results have been made completely 
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rigorous. In spite of differences between the models, our phase diagrams agree with those of 
ref. [4] on the .replica symmetric. solution of the SK model. Indeed, our solution is also 
reminiscent of the replica-symmetric solution, although here we can show that it is the 
correct solution for the Bethe lattice with statistically uncorrelated boundary conditions. 
The possibility of other boundary conditions will be briefly discussed at the end of this letter. 

The Hamiltonian typically used to  study spin glasses is the Edwards-Anderson 
Hamiltonian [61 

(w) 1 

The nearest-neighbor bonds Ji, j  are of equal strength but of random sign: Ji,j = JBi,j, where 
the Bi,j)s are quenched and independently distributed according to 

+ 1, with probability A 

- 1, with probability 1 - I \ ,  
4,, = 

and Hi is the external field at site i, which may or may not be uniform. 
The analysis in this paper is performed on the half-space(') Bethe lattice with forward 

branching ratio 2. The treelike structure allows us to write explicit recursion relations 
giving properties of level n in terms of those of level n + 1. For example, the magnetization 
of the origin, ( T ~ ) ,  is given by 

(3) 

where p = tgh ( J l k T ) ,  hi = tgh (Hi lkT) ,  y and z are the sites connected to  the origin, and the 
angle brackets denote thermal averages (2). 

Boundary conditions correspond to initial conditions for iteration of the recursion relation 
(3). Therefore, since most of the sites of a tree lie near the boundary, naive averages would 
be skewed by surface transients. We extract bulk behavior by performing our calculations 
on a large finite tree of radius RI embedded in an even larger lattice of radius RP, and taking 
Rz+ a before R I  + m. Bulk properties are thus determined by the behavior of the 
recursion relation after many iterations-the attractor. We study the stable self-consistent 
fixed point, which we believe should describe most uncorrelated initial conditions (all but a 
set of measure zero) (3). Frustration initially associated with the boundary is transmitted 
inwards, which leads to the glassy behavior. 

io (%,y b y )  + %2 ( 5 2 ) )  + h,(l + PO2%& (0,) &,z (dl 
1 + P 2 & , y ( Q y )  e5,2 (.*> + h Z i o ( % , , b , )  +&,z(az)) 

(%) = ' 

(') On the Bethe lattice it is easier to calculate half-space quantities, treating a particular site (say 
2) as the origin, and considering only the forward branching part of the lattice. Once the calculation is 
complete, a simple formula relates the full-space quantities to those that were calculated for the partial 
lattice. See ref. [Z]. 

(2) Here (q,) and (a,) are the magnetizations sites y and z would have if they were disconnected 
from the site x. 

(3) What we have shown rigorously is that our solution has a positive basin of attraction in the 
space of square-integrable functions. There are, however, a huge number of possible self-consistent 
solutions, corresponding to unlikely boundary conditions. For example, if one makes a gauge 
transformation to make all of the bonds ferromagnetic, and chooses .up>> boundary conditions in that 
gauge, one has a Mattis spin glass-essentially a ferromagnet. (In an external field, this is the random 
field Ising model on the Bethe lattice and has been studied by Bruinsma[7].) 
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At hi = 0, the paramagnetic phase boundary is determined by a moment analysis of eq. 
(3). For convenience, we first define X = O(crz), etc., where f3 is the sign of the bond joining 
the origin to a third neighbor in the <<full tree.. Then the random variables X, Y and 2 
satisfy 

with Y and 2 independent and identically distributed, and ((=)) to be understood in the sense 
of distributions. The corresponding equation for the probability density, p(X) ,  of X is 
p ( X )  =Jp(Y)p(Z)G(X - F ( Y ,  2; e)), where F ( Y ,  2; 0) is the r.h.s. of eq. (4). Up to multipli- 
cative constants, the first moment, m =X = sXp(X), is the magnetization, which is the 
order parameter for the ferromagnet; the second moment, qEAsX2=$X2p(X), is the 
Edwards-Anderson order parameter for the spin glass. Clearly the paramagnetic solution 
X = Y = 2 = 0 is a fured point of the recursion relation for all values of p and A. As the 
temperature is lowered, this solution becomes unstable and a phase transition occurs. 
Linear analysis-performed by discarding the denominator in eq. (4tindicates that an 
infinitesimal first moment will contract if 2p(2A - 1) < 1. Similarly, qEA = 0 is stable 
provided 2p2 < 1. The intersection of these two regions is the paramagnetic phase, where a 
detailed analysis shows that a general class of initial distributions iterates to X = 0 ( i . e .  
p ( X ) = & X ) ) .  See fig. 1. 

kt4 1 
I - +  

Fig. 1. - Phase diagram as a function of temperature ( p  = tgh (J lkT))  and fraction of ferromagnetic 
bonds, A. At high temperatures, the system is paramagnetic (P). As temperature decreases, not too 
surprisingly we find a ferromagnetic (F) phase near A = 1. More surprisingly, both the transition 
temperature, p = 1/fl = p ~ ,  and the character of the spin glass (SG) phase remain constant from 
A = 1/2 until A = 1/2(1+ 1/*) =AN = 85%. Intermediate between the (F) and (SG) phases is a 
magnetized spin glass (MSG) phase which shares properties of both. Phase diagram for h < 1/2 is given 
by reflection across the line A = 1/2, with analogues of the magnetized phases exhibiting 
antiferromagnetic order. Zero temperature intercepts are from ref. [81. 

Moment analysis in the low-temperature phase(s)-studying the growth of m or qEA 
when 2p(2A - 1) > 1 or 2p2 > l - c a n  be used to produce upper and lower bounds on the order 
parameters. See, e.g., fig. 2. This gives the critical exponents p = 1/2 for m at the 
ferromagnetic transition and p = 1 for QEA at the spin glass transition. The scaling behavior 
is more complex near the multicritical point ( p G ,  AN) where the spin glass and ferromagnetic 
boundaries intersect. It is worth noting that the Nishimori line [9] p = 2 A  - 1 passes through 
the multicritical point. 
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Fig. 2. - Bounds on the spin glass order parameter. A finite distance in from the boundary of the Bethe 
lattice, any nonzero initial distribution of magnetizations will give rise t o  a distribution whose second 
moment lies within the shaded band (0 < qL < qEA < qu) for any A < Ah.. The slopes of the upper and 
lower bounds agree at  the critical point; there is a second-order transition with - 2 I p - p ~ !  / p G .  

Between the ferromagnet and the spin glass, we find a magnetized spin glass (MSG) 
phase. The transition to this phase from the spin glass is marked by the onset of nonzero 
magnetization; near the multicritical point, we determine the phase boundary: 
6 1 p - p,I - v- by moment analysis. On the other hand, the boundary between the 
MSG and the ferromagnet cannot be derived via moment analysis; all moments are smooth 
through this transition. Nevertheless, the approach to  the transition from the ferromagnetic 
phase is signaled by divergence of a susceptibility conjugate to  f&A: 

In order to  calculate %EA on the Bethe lattice, we studied a rather complicated set of coupled 
recursion relations for two copies of the same quench of the lattice which are 
ferromagnetically joined by bonds of strength Y. Provided that the spins on the upper and 
lower replicas obey the constraint (52) = (0,") (as is the case in the ferromagnetic phase), 
xEA = (d/dr) (9: 9:) I r  = o. Using this, we have shown that xEA diverges with critical exponent 
y = 1 along the asymptotic curve 6 Jp - pocl - v-1, marking the MSG-ferro- 
magnetic boundary. 

For uniform h = /hi1 # 0 and A = 1/2, we derive the AT line by methods identical to our 
analysis of the MSG-ferromagnetic transition, with similar results. Namely, we find that all 
moments of ,p(X) are smooth as a function of h. Nevertheless, divergence of xEA signals a 
transition between a paramagnet at large fields and a spin glass phase at  small fields, with 
asymptotic phase boundary (32pG)1'31p - pGI - h2'3. Again we have y = 1. There are, 
however, anomalies in the crossover behavior at the transition (4). 

Next let us address the questions of existence and nature of solutions in the low- 
temperature phases. We begin by deriving the scaling form of ,c at the paramagnetic phase 
boundary. Moment analysis (see fig. 2) indicates that the random variables should be scaled 
according to X* = X l a  where 3 measures the distance from the critical line ( e . g .  
A = p - p ~ ) .  Along the phase boundary, the resealed recursion relation (4) takes the linear 
form 

(4) Calculations based on naive definitions of a crossover exponent, Q, yield a value of 9 = 2 for 
approach to the transition along the line p = p G ,  h -+ 0,  whereas 7 = 3 for approach to the AT line. 
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Fig. 3. - Scaling form of $4 near the pure ferromagnet (A = 0.99), numerically generated by iteration 
of eq. (6). 

For the spin glass transition (where A < A N  and p = p G = l / f l ) ,  (6) is satisfied by a 
Gaussian(5) p(X*) = G',,(X*) of arbitrary width, independent of A. However, along the 
ferromagnetic boundary (where A > AN and p = p,(A) = [2(2A - 1)]-'), (6) is not satisfied by 
any well-known distribution. Nevertheless, we can obtain all moments by raising (6) the 
n-th power, averaging and solving inductively. Using the Hamburger moment the- 
orems [lo], we have shown that for each value of A > AN, we obtain a different distribution 
p(X*) = $,^(X*) which is unique up to the scale of the mean. See fig. 3. 

Away from points of bifurcation, small changes in parameters like temperature result in 
continuous changes in p(X) .  This is guaranteed by the implicit function theorem. The 
recursion relation (4) gives rise to a linear operator which acts on perturbations to the futed- 
point density p ( X ) ;  if none of the eigenvalues of this operator are zero, the implicit function 
theorem gives the new p in terms of the old. However, along the paramagnetic critical line, 
the rescaled recursion relation (6) is linear, so that the random variables may be multiplied 
by an arbitrary constant; differentiating p with respect to this scale produces an 
eigenfunction with zero eigenvalue (6 ) .  At the multicritical point, two zero modes emerge; 
one is associated with the mean and the other with the width. 

Bifurcation theory allows one to identify the new solutions at  places where the implicit 
function theorem breaks down. The center manifold theorem [ll] reduces the problem of 
searching function space for the new solutions to searching a certain surface (with one 
dimension per zero mode). One then looks at the nonlinear terms of the recursion relation to 
determine the solution. We find a spin glass solution for p b pG which is stable until A = A N  
and unstable thereafter, a stable magnetized distribution for A a A N  near p,(A), and an 
interesting codimension-two bifurcation diagram at the multicritical point. 

We believe that the spin glass solution for uncorrelated boundary conditions may 
correspond to the .replica symmetric. solution of the SK model [4,12,13]. Indeed, in the 
limit that the number of nearest neighbors K+ m,  the solution apparently approaches the 

( 5 )  By the moment analysis, if A < AN it  turns out that all odd moments vanish and hence 8 may be 
ignored. Thus when p = l l f l  and A < AN, (6) reduces to the addition law for Gaussian random variables 

( 6 )  Along the spin glass critical line, the eigenfunctions of the linear operator are Hermite 
polynomials multiplied by the Gaussian distribution, with eigenvalues 2pE - 1 for n even and 
2p%(2A - 1) - 1 for n odd. Along the ferromagnetic line, the eigenfunctions are given in terms of 
derivatives of the fixed point density by Sn = [$01'"' for n even and [XSol'"' for n odd, with 
eigenvalues 2pn - 1 for n even and 2pn(2A - 1) - 1 for n odd. We have shown that the 3% are entire and 
form a complete set in an appropriate space. 

x* = (Y* + Z*)/fl. 
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<<replica symmetric. distribution ('). Hence this work may represent only the first step in a 
more complete analysis. In any case, we expect that the results presented here for the MSG- 
ferromagnetic and AT lines, the paramagnetic phase boundaries and the scaling forms of the 
distributions of single-site magnetizations along these phase boundaries will continue to hold 
(by analogy with the SK model). However, because our results for the MSG-spin glass phase 
boundary depend on higher-order terms, the asymptotics may be somewhat altered. 

The mean-field theory of spin glasses has been a longstanding, difficult problem. The 
infinite-range SK model took many years to understand; the analysis remains subtle and 
somewhat inscrutable, and the relationship to  finite-dimensional systems remains unclear. 
The mean-field theory on the Bethe lattice is much simpler. Mathematical proofs require 
some care and machinery [2,3]; in this paper we have attempted to present these results and 
methods in a more pedagogical form. We hope that the relative simplicity of the analysis and 
the short-range interactions will allow us to better understand the implications for finite- 
dimensional short-range spin glasses. 
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(') As K+ m ,  ow recursion relation apparently tends to the replica-symmetric relation: 
X = t gh [aGWI ,  where a = p l m ,  q is the second moment of the distribution p(X) ,  and W is a 
Gaussian of unit width. (We thank C. M. Newman for his efforts in this derivation.) In any case, we 
have verified that as K+ 03, the second moments q k  of the distributions p~ converge to q to second 
order in a - a,. 
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